Controlling solid elastic waves with spherical cloaks

We propose a cloak for coupled shear and pressure waves in solids. Its elastic properties are deduced from a geometric transform that retains the form of Navier equations. The spherical shell is made of an anisotropic and heterogeneous medium described by an elasticity tensor C' (without the minor symmetries) which has 21 non-zero spatially varying coefficients in spherical coordinates. Although some entries of C, e.g. some with a radial subscript, and the density (a scalar radial function) vanish on the inner boundary of the cloak, this metamaterial exhibits less singularities than its cylindrical counterpart studied in [M. Brun, S. Guenneau, A.B. Movchan, Appl. Phys. Lett. 94, 061903 (2009).] In the latter work, C' suffered some infinite entries, unlike in our case. Finite element computations confirm that elastic waves are smoothly detoured around a spherical void without reflection.

[1]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[2]  Mohamed Farhat,et al.  Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates , 2012 .

[3]  S. Guenneau,et al.  Experiments on seismic metamaterials: molding surface waves. , 2014, Physical review letters.

[4]  Sang-Hoon Kim,et al.  Seismic Waveguide of Metamaterials , 2012, 1202.1586.

[5]  Martin Wegener,et al.  On anisotropic versions of three-dimensional pentamode metamaterials , 2013 .

[6]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  F. J. García de abajo,et al.  Anisotropic metamaterials for full control of acoustic waves. , 2012, Physical review letters.

[8]  Martin Wegener,et al.  On the feasibility of pentamode mechanical metamaterials , 2012 .

[9]  Davide Bigoni,et al.  Asymptotic models of dilute composites with imperfectly bonded inclusions , 1998 .

[10]  Mohamed Farhat,et al.  Ultrabroadband elastic cloaking in thin plates. , 2009, Physical review letters.

[11]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[12]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[15]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[16]  Martin Wegener,et al.  Experiments on elastic cloaking in thin plates. , 2012, Physical review letters.

[17]  M. Wegener,et al.  Erratum: “On the practicability of pentamode mechanical metamaterials” [Appl. Phys. Lett. 100, 191901 (2012)] , 2012 .

[18]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[19]  Alexander B. Movchan,et al.  Achieving control of in-plane elastic waves , 2008, 0812.0912.

[20]  S. Guenneau,et al.  Broadband cylindrical acoustic cloak for linear surface waves in a fluid. , 2008, Physical review letters.

[21]  Andrew N. Norris,et al.  Elastic cloaking theory , 2011 .

[22]  J. Willis Variational principles for dynamic problems for inhomogeneous elastic media , 1981 .

[23]  D. Torrent,et al.  Acoustic metamaterials for new two-dimensional sonic devices , 2007 .

[24]  R. Craster,et al.  Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking , 2013 .

[25]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.