Efficiently approximating the minimum-volume bounding box of a point set in three dimensions

We present an efficient O(n+1/?4.5-time algorithm for computing a (1+?)-approximation of the minimum-volume bounding box of n points in R3. We also present a simpler algorithm whose running time is O(nlogn+n/?3). We give some experimental results with implementations of various variants of the second algorithm.

[1]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[2]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[3]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[4]  George E. Andrews,et al.  A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .

[5]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[6]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[7]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[8]  Olivier D. Faugeras,et al.  An object centered hierarchical representation for 3D objects: The prism tree , 1987, Comput. Vis. Graph. Image Process..

[9]  Leonidas J. Guibas,et al.  BOXTREE: A Hierarchical Representation for Surfaces in 3D , 1996, Comput. Graph. Forum.

[10]  Sariel Har-Peled,et al.  Approximate Shortest Paths and Geodesic Diameter on a Convex Polytope in Three Dimensions , 1999, Discret. Comput. Geom..

[11]  Ömer Egecioglu,et al.  Approximating the Diameter of a Set of Points in the Euclidean Space , 1989, Inf. Process. Lett..

[12]  Sariel Har-Peled,et al.  Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions , 1997, SCG '97.

[13]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  Sergey Bereg,et al.  Covering a set of points by two axis-parallel boxes , 1997, CCCG.

[16]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[17]  Martin Held,et al.  Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughs , 1995 .

[18]  David G. Kirkpatrick,et al.  Determining the Separation of Preprocessed Polyhedra - A Unified Approach , 1990, ICALP.

[19]  Peter Gritzmann,et al.  Inner and outerj-radii of convex bodies in finite-dimensional normed spaces , 1992, Discret. Comput. Geom..

[20]  J. D. Uiiman,et al.  Principles of Database Systems , 2004, PODS 2004.

[21]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1996, Discret. Comput. Geom..

[22]  Nick Roussopoulos,et al.  Direct spatial search on pictorial databases using packed R-trees , 1985, SIGMOD Conference.

[23]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1995, SCG '95.

[24]  Sergei N. Bespamyatnikh An efficient algorithm for the three-dimensional diameter problem , 1998, SODA '98.

[25]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[26]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[27]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[28]  Edgar A. Ramos,et al.  Intersection of Unit-balls and Diameter of a Point Set in 3 , 1997, Comput. Geom..