Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration

[1]  R. Apte,et al.  IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis , 2015, Nature Communications.

[2]  J. Provis,et al.  Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium , 2015, Journal of Neuroinflammation.

[3]  C. Wells,et al.  The Ground State of Innate Immune Responsiveness Is Determined at the Interface of Genetic, Epigenetic, and Environmental Influences , 2014, The Journal of Immunology.

[4]  Piotr J. Balwierz,et al.  ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs , 2014, Genome research.

[5]  L. Ziegler‐Heitbrock,et al.  Monocyte subsets in man and other species. , 2014, Cellular immunology.

[6]  L. Gautreau,et al.  Autologous Dendritic Cells Prolong Allograft Survival Through Tmem176b‐Dependent Antigen Cross‐Presentation , 2014, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[7]  S. Bicciato,et al.  Transcriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes In Vitro , 2014, PloS one.

[8]  Joonsoo Kang,et al.  Immunological Genome Project and systems immunology. , 2013, Trends in immunology.

[9]  José-Alain Sahel,et al.  CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice , 2013, EMBO molecular medicine.

[10]  Sivakumar Gowrisankar,et al.  Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration , 2013, Nature Genetics.

[11]  G. Grant,et al.  Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes , 2013, BMC Genomics.

[12]  N. Ershov,et al.  Rat retinal transcriptome: Effects of aging and AMD-like retinopathy , 2013, Cell cycle.

[13]  T. Sørensen,et al.  Increased expression of CD200 on circulating CD11b+ monocytes in patients with neovascular age-related macular degeneration. , 2013, Ophthalmology.

[14]  Avi Ma'ayan,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[15]  I. Chowers,et al.  Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. , 2013, Cell Metabolism.

[16]  Gabriëlle H S Buitendijk,et al.  Seven New Loci Associated with Age-Related Macular Degeneration , 2013, Nature Genetics.

[17]  G. Adamus,et al.  Autoimmune responses against photoreceptor antigens during retinal degeneration and their role in macrophage recruitment into retinas of RCS rats , 2013, Journal of Neuroimmunology.

[18]  Quang Bui,et al.  Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. , 2012, Acta histochemica.

[19]  A. Maisa,et al.  Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function , 2012, Aging cell.

[20]  I. Chowers,et al.  Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. , 2012, Investigative ophthalmology & visual science.

[21]  D. Weinberger,et al.  Monocyte chemoattractant protein‐1 in the aqueous humour of patients with age‐related macular degeneration , 2012, Clinical & experimental ophthalmology.

[22]  M. Nissen,et al.  Altered expression of CD46 and CD59 on leukocytes in neovascular age-related macular degeneration. , 2012, American journal of ophthalmology.

[23]  Stefan Schewe,et al.  Transcript profiling of CD16‐positive monocytes reveals a unique molecular fingerprint , 2012, European journal of immunology.

[24]  B. McFarlin,et al.  Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors , 2012, Journal of Biosciences.

[25]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[26]  G. Lip,et al.  The role of monocytes and inflammation in the pathophysiology of heart failure , 2011, European journal of heart failure.

[27]  A. Friedman,et al.  AP‐1 protein induction during monopoiesis favors C/EBP: AP‐1 heterodimers over C/EBP homodimerization and stimulates FosB transcription , 2011, Journal of leukocyte biology.

[28]  Takeya Kasukawa,et al.  Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain , 2011, PloS one.

[29]  Robyn H Guymer,et al.  Identification of urinary biomarkers for age-related macular degeneration. , 2011, Investigative ophthalmology & visual science.

[30]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[31]  B. Reese Development of the retina and optic pathway , 2011, Vision Research.

[32]  M. Hauser,et al.  Serial analysis of gene expression (SAGE) in normal human trabecular meshwork , 2011, Molecular vision.

[33]  P. Aljama,et al.  Senescent CD14+CD16+ Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity , 2011, The Journal of Immunology.

[34]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[35]  Rafael A. Irizarry,et al.  A framework for oligonucleotide microarray preprocessing , 2010, Bioinform..

[36]  J. Bazarian,et al.  Extracranial Sources of S100B Do Not Affect Serum Levels , 2010, PloS one.

[37]  Herman Waldmann,et al.  Tmem176B and Tmem176A are associated with the immature state of dendritic cells , 2010, Journal of leukocyte biology.

[38]  F. Tacke,et al.  Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults , 2010, BMC Immunology.

[39]  H. Neumann,et al.  Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease , 2010, ASN neuro.

[40]  G. Abecasis,et al.  Transcriptome analysis and molecular signature of human retinal pigment epithelium , 2010, Human molecular genetics.

[41]  C. Sensen,et al.  Phylogenetic Analysis of the MS4A and TMEM176 Gene Families , 2010, PloS one.

[42]  E. Chaum,et al.  Quantitative AP‐1 gene regulation by oxidative stress in the human retinal pigment epithelium , 2009, Journal of cellular biochemistry.

[43]  S. E. Barker,et al.  The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. , 2009, Investigative ophthalmology & visual science.

[44]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[45]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[46]  J. Ott,et al.  Polymorphisms in C2, CFB and C3 are associated with progression to advanced age related macular degeneration associated with visual loss , 2008, Journal of Medical Genetics.

[47]  Francesca Cordero,et al.  oneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language , 2007, Bioinform..

[48]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[49]  J. Walker Gene Set Enrichment Analysis (GSEA) for Interpreting Gene Expression Profiles , 2007 .

[50]  L. Ziegler‐Heitbrock,et al.  The CD14+ CD16+ blood monocytes: their role in infection and inflammation , 2007, Journal of leukocyte biology.

[51]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[52]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[53]  M. Ebara,et al.  Role of Clast1 in development of cerebellar granule cells , 2006, Brain Research.

[54]  S. Ferrari,et al.  Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. , 2006, Blood.

[55]  K. Boon,et al.  Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE. , 2006, Investigative ophthalmology & visual science.

[56]  Crispin J. Miller,et al.  Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis , 2005, Bioinform..

[57]  M. Birchall,et al.  Quantification of N‐CAM and N‐cadherin expression in axotomized and crushed rat sciatic nerve , 2005, Journal of anatomy.

[58]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[59]  Eiji Sakurai,et al.  An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice , 2003, Nature Medicine.

[60]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[61]  K. Csaky,et al.  Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. , 2003, Investigative ophthalmology & visual science.

[62]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[63]  C. Grimm,et al.  The genetic modifier Rpe65Leu(450): effect on light damage susceptibility in c-Fos-deficient mice. , 2003, Investigative ophthalmology & visual science.

[64]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[65]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[66]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[67]  T. Syrovets,et al.  Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. , 2001, Blood.

[68]  R. Strausberg,et al.  Genome and genetic resources from the Cancer Genome Anatomy Project. , 2001, Human molecular genetics.

[69]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[70]  George A. Williams,et al.  The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. , 1999, Controlled clinical trials.

[71]  Wilfred W. Li,et al.  The tumor promoter arsenite stimulates AP‐1 activity by inhibiting a JNK phosphatase. , 1996, The EMBO journal.

[72]  Acknowledgements , 1992, Experimental Gerontology.

[73]  I. Chowers,et al.  Association of neovascular age-related macular degeneration with specific gene expression patterns in peripheral white blood cells. , 2010, Investigative ophthalmology & visual science.

[74]  R. Sharan,et al.  Article type Software , 2005 .

[75]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[76]  H. Ziegler-Heitbrock Definition of human blood monocytes. , 2000, Journal of leukocyte biology.

[77]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .