Application of the parareal algorithm to simulations of ELMs in ITER plasma
暂无分享,去创建一个
Xavier Bonnin | Wael R. Elwasif | D. Samaddar | Lee A. Berry | Donald B. Batchelor | David Coster | X. Bonnin | D. Batchelor | W. Elwasif | L. Berry | D. Samaddar | David Coster
[1] Bruce D. Scott,et al. Free-energy conservation in local gyrofluid models , 2005 .
[2] M. Sugihara,et al. Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER , 2003 .
[3] Michael L. Minion,et al. TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .
[4] Guillaume Bal,et al. PARALLELIZATION IN TIME OF ( STOCHASTIC ) ORDINARY DIFFERENTIAL EQUATIONS , 2006 .
[5] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[6] Y. Maday,et al. A “Parareal” Time Discretization for Non-Linear PDE’s with Application to the Pricing of an American Put , 2002 .
[7] P. Stangeby. The Plasma Boundary of Magnetic Fusion Devices , 2000 .
[8] M. Beurskens,et al. SOLPS5 simulations of Type I ELMing H-mode at JET , 2009 .
[9] D. Coster,et al. Code development for ITER edge modelling – SOLPS5.1 , 2009 .
[10] G. Huysmans,et al. MHD stability in X-point geometry: simulation of ELMs , 2007 .
[11] Raúl Sánchez,et al. Event-based parareal: A data-flow based implementation of parareal , 2012, J. Comput. Phys..
[12] Xavier Bonnin,et al. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code , 2017, Comput. Phys. Commun..
[13] Magne S. Espedal,et al. A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation , 2005 .
[14] Andrew J. Christlieb,et al. Integral deferred correction methods constructed with high order Runge-Kutta integrators , 2009, Math. Comput..
[15] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[16] Frederic Escourbiac,et al. Surface heat loads on the ITER divertor vertical targets , 2017 .
[17] Charbel Farhat,et al. Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .
[18] Troppmann,et al. Observation of continuous divertor detachment in H-mode discharges in ASDEX upgrade. , 1995, Physical review letters.
[19] Samantha S. Foley,et al. The Design and Implementation of the SWIM Integrated Plasma Simulator , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.
[20] J. W. Connor,et al. Edge-localized modes - physics and theory , 1998 .
[21] W. Suttrop,et al. ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade , 2017 .
[22] Xavier Bonnin,et al. SOLPS modelling of W arising from repetitive mitigated ELMs in ITER , 2015 .
[23] F. Wagner,et al. A quarter-century of H-mode studies , 2007 .
[24] D. Coster. Whole device ELM simulations , 2009 .
[25] Raúl Sánchez,et al. Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..
[26] Martine Baelmans,et al. The new SOLPS-ITER code package , 2015 .
[27] Raúl Sánchez,et al. Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..
[28] R. L. Miller,et al. Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .
[29] S. Kruger,et al. NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .
[30] Samantha S. Foley,et al. A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application , 2011, MTAGS '11.
[31] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .
[32] M. Keilhacker,et al. H-mode confinement in tokamaks , 1987 .
[33] F. Wagner,et al. Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX , 1984 .
[34] R. Behn,et al. SOLPS 5 modelling of the ELMing H-mode on TCV , 2006 .
[35] Colin B. Macdonald,et al. Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..
[36] Y Maday,et al. Parallel-in-time molecular-dynamics simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[37] Upmc-Cnrs,et al. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model , 2014 .
[38] P. B. Snyder,et al. BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..