Application of the parareal algorithm to simulations of ELMs in ITER plasma

Abstract This paper explores the application of the parareal algorithm to simulations of ELMs in ITER plasma. The primary focus of this research is identifying the parameters that lead to optimum performance. Since the plasma dynamics vary extremely fast during an ELM cycle, a straightforward application of the algorithm is not possible and a modification to the standard parareal correction is implemented. The size of the time chunks also have an impact on the performance and needs to be optimized. A computational gain of 7.8 is obtained with 48 processors to illustrate that the parareal algorithm can be successfully applied to ELM plasma.

[1]  Bruce D. Scott,et al.  Free-energy conservation in local gyrofluid models , 2005 .

[2]  M. Sugihara,et al.  Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER , 2003 .

[3]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[4]  Guillaume Bal,et al.  PARALLELIZATION IN TIME OF ( STOCHASTIC ) ORDINARY DIFFERENTIAL EQUATIONS , 2006 .

[5]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[6]  Y. Maday,et al.  A “Parareal” Time Discretization for Non-Linear PDE’s with Application to the Pricing of an American Put , 2002 .

[7]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[8]  M. Beurskens,et al.  SOLPS5 simulations of Type I ELMing H-mode at JET , 2009 .

[9]  D. Coster,et al.  Code development for ITER edge modelling – SOLPS5.1 , 2009 .

[10]  G. Huysmans,et al.  MHD stability in X-point geometry: simulation of ELMs , 2007 .

[11]  Raúl Sánchez,et al.  Event-based parareal: A data-flow based implementation of parareal , 2012, J. Comput. Phys..

[12]  Xavier Bonnin,et al.  Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code , 2017, Comput. Phys. Commun..

[13]  Magne S. Espedal,et al.  A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation , 2005 .

[14]  Andrew J. Christlieb,et al.  Integral deferred correction methods constructed with high order Runge-Kutta integrators , 2009, Math. Comput..

[15]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[16]  Frederic Escourbiac,et al.  Surface heat loads on the ITER divertor vertical targets , 2017 .

[17]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[18]  Troppmann,et al.  Observation of continuous divertor detachment in H-mode discharges in ASDEX upgrade. , 1995, Physical review letters.

[19]  Samantha S. Foley,et al.  The Design and Implementation of the SWIM Integrated Plasma Simulator , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.

[20]  J. W. Connor,et al.  Edge-localized modes - physics and theory , 1998 .

[21]  W. Suttrop,et al.  ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade , 2017 .

[22]  Xavier Bonnin,et al.  SOLPS modelling of W arising from repetitive mitigated ELMs in ITER , 2015 .

[23]  F. Wagner,et al.  A quarter-century of H-mode studies , 2007 .

[24]  D. Coster Whole device ELM simulations , 2009 .

[25]  Raúl Sánchez,et al.  Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..

[26]  Martine Baelmans,et al.  The new SOLPS-ITER code package , 2015 .

[27]  Raúl Sánchez,et al.  Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..

[28]  R. L. Miller,et al.  Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .

[29]  S. Kruger,et al.  NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .

[30]  Samantha S. Foley,et al.  A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application , 2011, MTAGS '11.

[31]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[32]  M. Keilhacker,et al.  H-mode confinement in tokamaks , 1987 .

[33]  F. Wagner,et al.  Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX , 1984 .

[34]  R. Behn,et al.  SOLPS 5 modelling of the ELMing H-mode on TCV , 2006 .

[35]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[36]  Y Maday,et al.  Parallel-in-time molecular-dynamics simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Upmc-Cnrs,et al.  Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model , 2014 .

[38]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..