An enormous potential for niche construction through bacterial cross-feeding in a homogeneous environment

Microorganisms modify their environment by excreting by-products of metabolism, which can create new ecological niches that can help microbial populations diversify. A striking example comes from experimental evolution of genetically identical Escherichia coli populations that are grown in a homogeneous environment with the single carbon source glucose. In such experiments, stable communities of genetically diverse cross-feeding E. coli cells readily emerge. Some cells that consume the primary carbon source glucose excrete a secondary carbon source, such as acetate, that sustains other community members. Few such cross-feeding polymorphisms are known experimentally, because they are difficult to screen for. We studied the potential of bacterial metabolism to create new ecological niches based on cross-feeding. To do so, we used genome scale models of the metabolism of E. coli and metabolisms of similar complexity, to identify unique pairs of primary and secondary carbon sources in these metabolisms. We then combined dynamic flux balance analysis with analytical calculations to identify which pair of carbon sources can sustain a polymorphic cross-feeding community. We identified almost 10,000 such pairs of carbon sources, each of them corresponding to a unique ecological niche. Bacterial metabolism shows an immense potential for the construction of new ecological niches through cross feeding.

[1]  Ali R. Zomorrodi,et al.  Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities , 2017, Nature Communications.

[2]  Bernhard O. Palsson,et al.  Connecting Extracellular Metabolomic Measurements to Intracellular Flux States in Yeast , 2022 .

[3]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[4]  Paul B Rainey,et al.  Studies of Adaptive Radiation Using Model Microbial Systems , 2000, The American Naturalist.

[5]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[6]  J. Coyne Sympatric speciation , 2007, Current Biology.

[7]  J. S. Turner,et al.  The Extended Organism: The Physiology of Animal-Built Structures , 2000 .

[8]  B. Godelle,et al.  FROM METABOLISM TO POLYMORPHISM IN BACTERIAL POPULATIONS: A THEORETICAL STUDY , 2001, Evolution; international journal of organic evolution.

[9]  R. Merks,et al.  Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism , 2016, bioRxiv.

[10]  Daniel Segrè,et al.  Ecosystems biology of microbial metabolism. , 2011, Current opinion in biotechnology.

[11]  W. Holben,et al.  E Unibus Plurum: Genomic Analysis of an Experimentally Evolved Polymorphism in Escherichia coli , 2009, PLoS genetics.

[12]  B. Henes,et al.  High level production of tyrosinase in recombinant Escherichia coli , 2013, BMC Biotechnology.

[13]  D. Stahl,et al.  Metabolic modeling of a mutualistic microbial community , 2007, Molecular systems biology.

[14]  Guillaume Beslon,et al.  Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification , 2017, PLoS Comput. Biol..

[15]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[16]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[17]  Maureen L. Coleman,et al.  Genomic Islands and the Ecology and Evolution of Prochlorococcus , 2006, Science.

[18]  Andreas Wagner,et al.  The potential for non-adaptive origins of evolutionary innovations in central carbon metabolism , 2016, BMC Systems Biology.

[19]  Marten Scheffer,et al.  The interplay of facilitation and competition in plant communities , 1997 .

[20]  Manal AbuOun,et al.  Genome Scale Reconstruction of a Salmonella Metabolic Model , 2009, The Journal of Biological Chemistry.

[21]  Sam P. Brown,et al.  Building the microbiome in health and disease: niche construction and social conflict in bacteria , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[23]  Daniel A Beard,et al.  Extreme pathways and Kirchhoff's second law. , 2002, Biophysical journal.

[24]  S. Bonhoeffer,et al.  Evolution of Cross‐Feeding in Microbial Populations , 2004, The American Naturalist.

[25]  Daniel E Rozen,et al.  Long‐Term Experimental Evolution in Escherichia coli. VIII. Dynamics of a Balanced Polymorphism , 2000, The American Naturalist.

[26]  Richard E. Lenski,et al.  Epistasis and Allele Specificity in the Emergence of a Stable Polymorphism in Escherichia coli , 2014, Science.

[27]  Martin J. Lercher,et al.  Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal , 2017, PLoS Comput. Biol..

[28]  M. Doebeli,et al.  A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms , 2002, Population Ecology.

[29]  D. Krizanc,et al.  Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species , 2013, The ISME Journal.

[30]  R. MacLean,et al.  Constraints on microbial metabolism drive evolutionary diversification in homogeneous environments , 2007, Journal of evolutionary biology.

[31]  Dan S. Tawfik,et al.  The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. , 2011, Biochemistry.

[32]  G. Bell,et al.  Resource competition and adaptive radiation in a microbial microcosm , 2004 .

[33]  Peer Bork,et al.  Metabolic dependencies drive species co-occurrence in diverse microbial communities , 2015, Proceedings of the National Academy of Sciences.

[34]  H. Qian,et al.  Energy balance for analysis of complex metabolic networks. , 2002, Biophysical journal.

[35]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[36]  M. Feldman,et al.  An introduction to niche construction theory , 2016, Evolutionary Ecology.

[37]  Alex H. Lang,et al.  Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. , 2014, Cell reports.

[38]  Costas D. Maranas,et al.  OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities , 2012, PLoS Comput. Biol..

[39]  E. Nevo,et al.  Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at "Evolution Canyons" I and II, Israel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Matteo Mori,et al.  Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality , 2016, bioRxiv.

[41]  Jerry A. Coyne,et al.  Genetics and speciation , 1992, Nature.

[42]  D. Erwin Macroevolution of ecosystem engineering, niche construction and diversity. , 2008, Trends in ecology & evolution.

[43]  Andreas Wagner,et al.  Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks , 2009, PLoS Comput. Biol..

[44]  T. Fukami,et al.  Rapid evolution of adaptive niche construction in experimental microbial populations , 2014, Evolution; international journal of organic evolution.

[45]  Madhav P. Thakur,et al.  Environmental Filtering, Niche Construction, and Trait Variability: The Missing Discussion. , 2017, Trends in ecology & evolution.

[46]  Experimental evidence that evolution by niche construction affects dissipative ecosystem dynamics , 2016, Evolutionary Ecology.

[47]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[48]  D. M. Ward,et al.  Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics , 2008, Proceedings of the National Academy of Sciences.

[49]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[50]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[51]  Andreas Wagner,et al.  Historical contingency and the gradual evolution of metabolic properties in central carbon and genome-scale metabolisms , 2014, BMC Systems Biology.

[52]  Ioannis G. Tollis,et al.  A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain communities , 2011, BMC Systems Biology.

[53]  Wolfgang Wiechert,et al.  Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms , 2012, Microbial Cell Factories.

[54]  Navdeep S. Chandel,et al.  Fundamentals of cancer metabolism , 2016, Science Advances.

[55]  Fyodor A. Kondrashov,et al.  Interactions among quantitative traits in the course of sympatric speciation , 1999, Nature.

[56]  Sam P. Brown,et al.  From Metabolism to Ecology: Cross-Feeding Interactions Shape the Balance between Polymicrobial Conflict and Mutualism , 2012, The American Naturalist.

[57]  Jeff Gore,et al.  Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism , 2016, PLoS biology.

[58]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[59]  J. Adams,et al.  Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. , 1998, Molecular biology and evolution.

[60]  F. J. Odling-Smee,et al.  Evolutionary consequences of niche construction and their implications for ecology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Lenski,et al.  Ecological speciation of bacteriophage lambda in allopatry and sympatry , 2016, Science.

[62]  Michael Travisano,et al.  Adaptive radiation in a heterogeneous environment , 1998, Nature.

[63]  R. Rosenzweig,et al.  Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. , 1994, Genetics.

[64]  S. Enfors,et al.  Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli , 1999, Applied Microbiology and Biotechnology.

[65]  Jared W. Wenger,et al.  Ex Uno Plures: Clonal Reinforcement Drives Evolution of a Simple Microbial Community , 2014, PLoS genetics.

[66]  Andreas Wagner,et al.  Genotype networks in metabolic reaction spaces , 2010, BMC Systems Biology.

[67]  Orkun S. Soyer,et al.  Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment , 2016, BMC Evolutionary Biology.

[68]  A. Meyer,et al.  Sympatric speciation in Nicaraguan crater lake cichlid fish , 2006, Nature.

[69]  Benjamin H. Good,et al.  The Dynamics of Molecular Evolution Over 60,000 Generations , 2017, Nature.

[70]  H. Rundle,et al.  Speciation in nature : the threespine stickleback model systems , 2002 .

[71]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[72]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[73]  Olivier C. Martin,et al.  Randomizing Genome-Scale Metabolic Networks , 2010, PloS one.

[74]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[75]  G. Bush,et al.  Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella , 1988, Nature.

[76]  A. Joern,et al.  Coexisting generalist herbivores occupy unique nutritional feeding niches , 2008, Proceedings of the National Academy of Sciences.

[77]  Johan van de Koppel,et al.  Under niche construction: an operational bridge between ecology, evolution, and ecosystem science , 2014 .

[78]  M. Higashi,et al.  Sympatric speciation by sexual selection , 1999, Nature.

[79]  Elhanan Borenstein,et al.  Emergent Biosynthetic Capacity in Simple Microbial Communities , 2014, PLoS Comput. Biol..

[80]  Dai Fukumura,et al.  Dissecting tumour pathophysiology using intravital microscopy , 2002, Nature Reviews Cancer.

[81]  T. Ferenci,et al.  Clonal Adaptive Radiation in a Constant Environment , 2006, Science.

[82]  Peter Rashkov,et al.  Stability of Cross-Feeding Polymorphisms in Microbial Communities , 2016, PLoS Comput. Biol..

[83]  Lawrence A. David,et al.  Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton , 2008, Science.

[84]  F. J. Odling-Smee,et al.  Rethinking Adaptation: The Niche-Construction Perspective , 2003, Perspectives in biology and medicine.

[85]  J. Adams,et al.  Evolution of Escherichia coli during growth in a constant environment. , 1987, Genetics.

[86]  J. Lennon,et al.  Scaling laws predict global microbial diversity , 2016, Proceedings of the National Academy of Sciences.

[87]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[88]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[89]  P. Marquet,et al.  Diversity emerging: from competitive exclusion to neutral coexistence in ecosystems , 2012, Theoretical Ecology.

[90]  S. Simpson,et al.  Integrating nutrition : a geometrical approach , 2022 .

[91]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[92]  R. Kassen The experimental evolution of specialists, generalists, and the maintenance of diversity , 2002 .

[93]  Niels Klitgord,et al.  The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum , 2013, PLoS Comput. Biol..

[94]  E. Borenstein,et al.  Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules , 2013, Proceedings of the National Academy of Sciences.

[95]  Yuanying Chen,et al.  Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary , 2023, bioRxiv.

[96]  Andreas Wagner,et al.  A latent capacity for evolutionary innovation through exaptation in metabolic systems , 2013, Nature.

[97]  D. Burk,et al.  On respiratory impairment in cancer cells. , 1956, Science.

[98]  E. Borenstein,et al.  Metabolic Model-Based Analysis of the Emergence of Bacterial Cross-Feeding through Extensive Gene Loss , 2017, bioRxiv.

[99]  G. F. Gause The struggle for existence , 1971 .

[100]  Costas D Maranas,et al.  Review of the BRENDA Database. , 2003, Metabolic engineering.

[101]  Griffin M. Weber,et al.  BioNumbers—the database of key numbers in molecular and cell biology , 2009, Nucleic Acids Res..