Enhanced electric-field induced strain in Eu3+ doped 0.67BiFeO3-0.33BaTiO3 lead-free piezoelectric ceramics

[1]  Chunchang Wang,et al.  Enhanced Piezoelectricity and Thermal Stability of Electrostrain Performance in BiFeO3-Based Lead-Free Ceramics , 2023, Nanomaterials.

[2]  Y. Wan,et al.  Tailoring Curie temperature and dielectric properties by changing the doping sites of Y ions in (Ba, Ca)(Zr, Ti)O3 ceramics , 2023, Journal of the European Ceramic Society.

[3]  Astri Bjørnetun Haugen,et al.  Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramics , 2022, Journal of the European Ceramic Society.

[4]  Wuwei Feng,et al.  Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics , 2022, Journal of the European Ceramic Society.

[5]  R. Zuo,et al.  Superior Energy-Storage Properties in Bi0.5Na0.5TiO3-Based Lead-Free Ceramics via Simultaneously Manipulating Multiscale Structure and Field-Induced Structure Transition. , 2022, ACS applied materials & interfaces.

[6]  K. Webber,et al.  Electromechanical properties of paper‐derived potassium sodium niobate piezoelectric ceramics , 2022, Journal of the American Ceramic Society.

[7]  Yangzhi Yin,et al.  Boosting the High Performance of BiFeO3-BaTiO3 Lead-Free Piezoelectric Ceramics: One-Step Preparation and Reaction Mechanisms. , 2022, ACS applied materials & interfaces.

[8]  Mayeen Uddin Khandaker,et al.  Ultrahigh piezoelectric strain in lead-free BiFeO3-BaTiO3 ceramics at elevated temperature , 2022, Journal of Alloys and Compounds.

[9]  S. Sushanth Kumar,et al.  A comparative study of structural and multiferroic properties of Ca, Sr and Ba doped 0.2BiFeO3–0.8PbTiO3 solid solutions , 2022, Materials Characterization.

[10]  Tongxiang Liang,et al.  Ferroelectric properties and large electric field-induced strain of Eu3+-doped Na0.5Bi0.5TiO3–BaTiO3 lead-free ceramics , 2022, Ceramics International.

[11]  Mansour M. Hassan,et al.  Preparation, Structural and Dielectric Properties of Nanocomposite Al2O3/BaTiO3 for Multilayer Ceramic Capacitors Applications , 2022, Journal of Materials Research and Technology.

[12]  Fangfang Zeng,et al.  Enhanced Electric Field-Induced Strain Properties in Lead-Free BF-BT-Based Piezoceramics by Local Structure Inhomogeneity , 2022, ACS Sustainable Chemistry & Engineering.

[13]  Dou Zhang,et al.  Grain Size Effects in Mn-Modified 0.67BiFeO3-0.33BaTiO3 Ceramics. , 2021, ACS applied materials & interfaces.

[14]  D. Lim,et al.  Large electromechanical strain response in BiFeO3–BaTiO3-based ceramics at elevated temperature , 2021 .

[15]  Hongtao Yu,et al.  Bifunctional Europium Doped SrTiO3 Ceramics with Energy Storage and Photoluminescence , 2021, Journal of Alloys and Compounds.

[16]  Jiping Wang,et al.  Enhanced electric field induced strain in B-site Sb doped BiFeO3-BaTiO3 lead free ceramics , 2021 .

[17]  Wangfeng Bai,et al.  High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics , 2021, Ceramics International.

[18]  Qibin Liu,et al.  Relaxor behavior and superior ferroelectricity of Y2O3-doped (Ba0.98Ca0.02)(Ti0.94Sn0.04Zr0.02)O3 lead-free ceramics☆ , 2021 .

[19]  Jiagang Wu,et al.  Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution , 2021 .

[20]  T. Song,et al.  Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature , 2021 .

[21]  Jingfeng Li,et al.  Lead-Free BiFeO3-BaTiO3 Ceramics with High Curie Temperature: Fine Compositional Tuning across the Phase Boundary for High Piezoelectric Charge and Strain Coefficients. , 2021, ACS applied materials & interfaces.

[22]  H. Ez‐zahraouy,et al.  Effect of rare earth on physical properties of Na0.5Bi0.5TiO3 system: A density functional theory investigation , 2020 .

[23]  Juan Du,et al.  Achieving high-energy storage performance in 0.67Bi1Sm FeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics , 2020, Ceramics International.

[24]  Dengwei Hu,et al.  Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design , 2020, Journal of the European Ceramic Society.

[25]  H. Fan,et al.  Dielectric, impedance and piezoelectric properties of (Na0.5La0.5)TiO3-doped 0.67BiFeO3–0.33BaTiO3 ceramics , 2019, Journal of Materials Science: Materials in Electronics.

[26]  Boping Zhang,et al.  Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics , 2019, Ceramics International.

[27]  X. Dong,et al.  Thermally stable electrostrain in BiFeO3-BaTiO3-based high temperature lead-free piezoceramics , 2019, Applied Physics Letters.

[28]  T. Song,et al.  Thermal Quenching Effects on the Ferroelectric and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics , 2019, ACS Applied Electronic Materials.

[29]  A. Gibaud,et al.  The interplay of phases, structural disorder and dielectric behavior in Al doped BiFeO3-BaTiO3 ceramics , 2019, Journal of Alloys and Compounds.

[30]  X. Dong,et al.  High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics , 2019, Scripta Materialia.

[31]  Wei Li,et al.  Progress in high-strain perovskite piezoelectric ceramics , 2019, Materials Science and Engineering: R: Reports.

[32]  X. Qi,et al.  Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3–BaTiO3–LaFeO3 ceramics , 2018, Ceramics International.

[33]  S. Wada,et al.  Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics , 2018, Ceramics International.

[34]  R. Malik,et al.  Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics , 2018, Journal of the European Ceramic Society.

[35]  Jingfeng Li,et al.  Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature , 2018, Scripta Materialia.

[36]  Xiaoning Jiang,et al.  Recent Developments in Piezoelectric Crystals , 2018, Journal of the Korean Ceramic Society.

[37]  X. Tan,et al.  High strain (0.4%) Bi(Mg 2/3 Nb 1/3 )O 3 ‐BaTiO 3 ‐BiFeO 3 lead‐free piezoelectric ceramics and multilayers , 2018, Journal of the American Ceramic Society.

[38]  Xing’ao Li,et al.  Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO3 nanoparticles , 2017, Journal of Materials Science: Materials in Electronics.

[39]  Ali Hussain,et al.  Synthesis and electromechanical properties of LiTaO3-modified BiFeO3–BaTiO3 piezoceramics , 2017 .

[40]  H. Fan,et al.  Average vs. local structure and composition-property phase diagram of K 0.5 Na 0.5 NbO 3 -Bi ½ Na ½ TiO 3 system , 2017 .

[41]  I. Reaney,et al.  Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics , 2017 .

[42]  J. Zhai,et al.  Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Mg, Ni, Co). , 2016, Dalton transactions.

[43]  M. Cao,et al.  High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency , 2015 .

[44]  R. Zuo,et al.  Phase‐Composition‐Dependent Piezoelectric and Electromechanical Strain Properties in (Bi1/2Na1/2)TiO3–Ba(Ni1/2Nb1/2)O3 Lead‐Free Ceramics , 2015 .

[45]  A. Bell,et al.  Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 Solid Solutions , 2014 .

[46]  S. Wada,et al.  Enhancement in the piezoelectric properties of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 system ceramics by nanodomain , 2013 .

[47]  Jacob L. Jones,et al.  Stress-induced structural changes in La-doped BiFeO3–PbTiO3 high-temperature piezoceramics , 2010 .

[48]  A. Kounga,et al.  Phase Characteristics and Piezoelectric Properties in the Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 System , 2010 .

[49]  Richard E. Eitel,et al.  Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics , 2009 .

[50]  J. Neaton,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2004, cond-mat/0407679.

[51]  Xing’ao Li,et al.  Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles , 2017 .

[52]  Jinrong Cheng,et al.  High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics , 2016, Journal of Materials Science.

[53]  V. Marinova,et al.  Transformation processes in relaxor ferroelectric PbSc0.5Ta0.5O3 heavily doped with Nb and Sn , 2010 .