Fluctuation-response relation unifies dynamical behaviors in neural fields.

Anticipation is a strategy used by neural fields to compensate for transmission and processing delays during the tracking of dynamical information and can be achieved by slow, localized, inhibitory feedback mechanisms such as short-term synaptic depression, spike-frequency adaptation, or inhibitory feedback from other layers. Based on the translational symmetry of the mobile network states, we derive generic fluctuation-response relations, providing unified predictions that link their tracking behaviors in the presence of external stimuli to the intrinsic dynamics of the neural fields in their absence.

[1]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[5]  R U Muller,et al.  Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats , 1998, Hippocampus.

[6]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[7]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[8]  Mark C. W. van Rossum,et al.  Recurrent networks with short term synaptic depression , 2009, Journal of Computational Neuroscience.

[9]  Margaret Nichols Trans , 2015, De-centering queer theory.

[10]  S. Coombes,et al.  Bumps, breathers, and waves in a neural network with spike frequency adaptation. , 2005, Physical review letters.

[11]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[12]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Haim Sompolinsky,et al.  Traveling Waves and the Processing of Weakly Tuned Inputs in a Cortical Network Module , 2004, Journal of Computational Neuroscience.

[14]  Si Wu,et al.  Dynamics and Computation of Continuous Attractors , 2008, Neural Computation.

[15]  D. Touretzky,et al.  Modeling attractor deformation in the rodent head-direction system. , 2000, Journal of neurophysiology.

[16]  Luigi Acerbi,et al.  Advances in Neural Information Processing Systems 27 , 2014 .

[17]  Shay B. Cohen,et al.  Advances in Neural Information Processing Systems 25 , 2012, NIPS 2012.

[18]  Si Wu,et al.  Compensating time delays with neural predictions: are predictions sensory or motor? , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Si Wu,et al.  Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy, and Mobility , 2011, Neural Computation.

[20]  W. Marsden I and J , 2012 .

[21]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[22]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[23]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[24]  Si Wu,et al.  A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks , 2008, Neural Computation.

[25]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[28]  H. T. Blair,et al.  Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  H. Kalmus Biological Cybernetics , 1972, Nature.

[31]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[32]  Si Wu,et al.  Neural Information Processing with Feedback Modulations , 2012, Neural Computation.

[33]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[34]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[35]  Shun-ichi Amari,et al.  Spontaneous Motion on Two-Dimensional Continuous Attractors , 2015, Neural Computation.

[36]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.