Drosophila

Methods in Molecular Biology Series Editor: John M. Walker Volume: Drosophila: Methods and Protocols Edited by Christian Dahmann, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Contents Preface Contributors 1 Drosophila melanogaster and the Development of Biology in the XX century Alfonso Martinez Arias 2 Getting started: An overview on raising and using Drosophila Hugo Stocker and Peter Gallant 3 FlyBase: A database for the Drosophila research community Rachel Drysdale 4 The use of P-element transposons to generate transgenic flies Andre Bachmann and Elisabeth Knust 5 The GAL4 system: a versatile system for the expression of genes David A. Elliott and Andrea H. Brand 6 P-element mutagenesis Thomas Hummel and Christian Klambt 7 EMS Screens: From mutagenesis to screening and mapping Christian Bokel 8 RNAi screening in cultured Drosophila cells Sandra Steinbrink and Michael Boutros 9 Methods for homologous recombination in Drosophila Keith A. Maggert, Wei J Gong, and Kent G. Golic 10 Recombinases and their use in gene activation, gene inactivation, and transgenesis Johannes Bischof and Konrad Basler 11 Cuticle preparation of Drosophila embryos and larvae Cyrille Alexandre 12 Immunolabelling of embryos H.- Arno J. Muller 13 Imaging cellular and molecular dynamics in live embryos using fluorescent proteins Matthieu Cavey and Thomas Lecuit 14 Analysis of neuromuscular junctions: histology and in vivo imaging Andreas Schmid and Stephan J. Sigrist 15 Immunolabelling of imaginal discs Thomas Klein 16 Imaging Drosophila pupal wing morphogenesis Anne-Kathrin Classen, Benoit Aigouy, Angela Giangrande, and SuzanneEaton 17 Microscopic analysis of the adult Drosophila retina using semi thin plastic sections Konstantin Gaengel and Marek Mlodzik 18 Fluorescent in situ hybridization protocols in Drosophila embryos and tissues Eric Lecuyer, Neela Parthasarathy, and Henry M. Krause 19 Linear RNA amplification for the production of microarray hybridization probes Ansgar Klebes and Thomas B. Kornberg 20 An overview of the identification, detection, and functional analysis of Drosophila microRNAs Nicholas Sokol 21 Extraction and immunoblotting of proteins from embryos Andreas Wodarz 22 Purification of Drosophila protein complexes for mass spectrometry Christoph Juschke and Jurgen A. Knoblich 23 Mass production of Drosophila embryos and chromatographic purification of native protein complexes Natascha Kunert and Alexander Brehm 24 Flow cytometric analysis of Drosophila cells Aida Flor A. de la Cruz and Bruce A. Edgar 25 Drosophila cell lines as model systems and as an experimental tool Buzz Baum and Lucy Cherbas Index

[1]  J. Kramer,et al.  GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. , 2003, Genetics and molecular research : GMR.

[2]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[3]  Michael Carey,et al.  DNA recognition by GAL4: structure of a protein-DNA complex , 1992, Nature.

[4]  P. Zamore,et al.  Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells , 2008, Nature Protocols.

[5]  D. V. Vactor,et al.  NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript NIH Public Access Author Manuscript Nat Methods. Author manuscript; available in PMC 2011 September 30. , 2009 .

[6]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[7]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[8]  D. Chasman,et al.  Interaction of GAL4 and GAL80 gene regulatory proteins in vitro , 1987, Molecular and cellular biology.

[9]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[10]  Gerald M. Rubin,et al.  Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death , 1995, Cell.

[11]  C. Bakal,et al.  The Twin Spot Generator for differential Drosophila lineage analysis , 2009, Nature Methods.

[12]  S. Cohen,et al.  Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila , 2008, Current Biology.

[13]  D Kosman,et al.  Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. , 1997, Development.

[14]  K. Basler,et al.  Recombinases and their use in gene activation, gene inactivation, and transgenesis. , 2008, Methods in molecular biology.

[15]  N. Sokol,et al.  Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression , 2010, Nature.

[16]  W. Bender,et al.  MicroRNAs in the Drosophila bithorax complex. , 2008, Genes & development.

[17]  G. Davis,et al.  Homeostatic Control of Presynaptic Release Is Triggered by Postsynaptic Membrane Depolarization , 2001, Neuron.

[18]  Daniel St Johnston,et al.  The art and design of genetic screens: Drosophila melanogaster , 2002, Nature Reviews Genetics.

[19]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[20]  I. Meinertzhagen,et al.  The functional organisation of glia in the adult brain of Drosophila and other insects , 2010, Progress in Neurobiology.

[21]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[22]  Gerald B Call,et al.  G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila , 2009, Nature Methods.

[23]  E. Lai,et al.  The Drosophila miR-310 Cluster Negatively Regulates Synaptic Strength at the Neuromuscular Junction , 2010, Neuron.

[24]  I. Furusawa,et al.  Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA‐binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner , 2000, Molecular microbiology.

[25]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[26]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[27]  M. Case,et al.  The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. , 1991, The Journal of heredity.

[28]  S. Lindquist,et al.  The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genome , 1989, Cell.

[29]  Tzumin Lee,et al.  Twin-Spot MARCM to reveal developmental origin and identity of neurons , 2009, Nature Neuroscience.

[30]  L. Guarente,et al.  Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Wagner,et al.  Structure and mobility of the PUT3 dimer , 1997, Nature Structural Biology.

[32]  M. Schweizer,et al.  Genetic organization and transcriptional regulation in the qa gene cluster of Neurospora crassa. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[33]  N. Giles,et al.  Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain , 1987, Molecular and cellular biology.

[34]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  L. Huiet,et al.  The qa repressor gene of Neurospora crassa: wild-type and mutant nucleotide sequences. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Liqun Luo,et al.  Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development , 2001, Trends in Neurosciences.

[37]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[38]  L. Luo,et al.  Using the MARCM system to positively mark mosaic clones in Drosophila , 2002 .

[39]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[40]  P. Kraulis,et al.  Structure of the DNA-binding domain of zinc GAL4 , 1992, Nature.

[41]  D. Kvitsiani,et al.  Neural Circuitry that Governs Drosophila Male Courtship Behavior , 2005, Cell.

[42]  H. Steller,et al.  The head involution defective gene of Drosophila melanogaster functions in programmed cell death. , 1995, Genes & development.

[43]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[44]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[45]  V. Ambros,et al.  Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. , 2008, Genes & development.

[46]  Julie H. Simpson,et al.  Mapping and manipulating neural circuits in the fly brain. , 2009, Advances in genetics.

[47]  W. Gehring,et al.  Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. , 1998, Development.

[48]  L. Johnston,et al.  Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs , 2008, Current Biology.

[49]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[50]  Florence Friggi-Grelin,et al.  Control of Antagonistic Components of the Hedgehog Signaling Pathway by microRNAs in Drosophila , 2008, Genetics.

[51]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[52]  N. Perrimon,et al.  Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes , 2008, Nature Genetics.

[53]  M Ptashne,et al.  Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. , 2001, Genes & development.

[54]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.