High Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.Copyright © 1999 by ASME