Chaos control via a simple fractional-order controller

In this Letter, we propose a fractional-order controller to stabilize the unstable fixed points of an unstable open-loop system. Also, we show that this controller has strong ability to eliminate chaotic oscillations or reduce them to regular oscillations in the chaotic systems. This controller has simple structure and is designed very easily. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of uncertain chaotic systems.

[1]  A. Charef,et al.  Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/ controller , 2006 .

[2]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[3]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[4]  A. J. Calderón,et al.  The fractional order lead compensator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[5]  N. Laskin Fractional market dynamics , 2000 .

[6]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[7]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[8]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[9]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[10]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[11]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[12]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[13]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[14]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[15]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[16]  L. Chua,et al.  The double scroll family , 1986 .

[17]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[18]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[19]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[20]  Michael Peter Kennedy,et al.  Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .

[21]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[22]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[25]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .