Selection of an Interval for Variable Shape Parameter in Approximation by Radial Basis Functions

In radial basis function approximation, the shape parameter can be variable. The values of the variable shape parameter strategies are selected from an interval which is usually determined by trial and error. As yet there is not any algorithm for determining an appropriate interval, although there are some recipes for optimal values. In this paper, a novel algorithm for determining an interval is proposed. Different variable shape parameter strategies are examined. The results show that the determined interval significantly improved the accuracy and is suitable enough to count on in variable shape parameter strategies.

[1]  Silvia Bertoluzza,et al.  A high order collocation method for the static and vibration analysis of composite plates using a first-order theory , 2009 .

[2]  Ji Lin,et al.  A new radial basis function for Helmholtz problems , 2012 .

[3]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[4]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[5]  Song Xiang,et al.  Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation , 2012 .

[6]  Manuel Kindelan,et al.  Optimal constant shape parameter for multiquadric based RBF-FD method , 2011, J. Comput. Phys..

[7]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[8]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[9]  Marjan Uddin,et al.  On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method , 2014 .

[10]  C. Tsai,et al.  The Golden Section Search Algorithm for Finding a Good Shape Parameter for Meshless Collocation Methods , 2010 .

[11]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[12]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[13]  Quan Shen,et al.  A meshless method of lines for the numerical solution of KdV equation using radial basis functions , 2009 .

[14]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[15]  Scott A. Sarra,et al.  A random variable shape parameter strategy for radial basis function approximation methods , 2009 .

[16]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[17]  Leevan Ling,et al.  Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .

[18]  R. E. Carlson,et al.  Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .

[19]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[20]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..