Selection of an Interval for Variable Shape Parameter in Approximation by Radial Basis Functions
暂无分享,去创建一个
[1] Silvia Bertoluzza,et al. A high order collocation method for the static and vibration analysis of composite plates using a first-order theory , 2009 .
[2] Ji Lin,et al. A new radial basis function for Helmholtz problems , 2012 .
[3] A. Cheng,et al. Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .
[4] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[5] Song Xiang,et al. Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation , 2012 .
[6] Manuel Kindelan,et al. Optimal constant shape parameter for multiquadric based RBF-FD method , 2011, J. Comput. Phys..
[7] A. Cheng. Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .
[8] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[9] Marjan Uddin,et al. On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method , 2014 .
[10] C. Tsai,et al. The Golden Section Search Algorithm for Finding a Good Shape Parameter for Meshless Collocation Methods , 2010 .
[11] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[12] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[13] Quan Shen,et al. A meshless method of lines for the numerical solution of KdV equation using radial basis functions , 2009 .
[14] C.M.C. Roque,et al. Numerical experiments on optimal shape parameters for radial basis functions , 2009 .
[15] Scott A. Sarra,et al. A random variable shape parameter strategy for radial basis function approximation methods , 2009 .
[16] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[17] Leevan Ling,et al. Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .
[18] R. E. Carlson,et al. Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .
[19] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[20] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..