Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.

We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300  μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

[1]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[2]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[3]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[4]  C. Campbell Surface Acoustic Wave Devices and Their Signal Processing Applications , 1989 .

[5]  R. Barends,et al.  Chiral ground-state currents of interacting photons in a synthetic magnetic field , 2016, Nature Physics.

[6]  P. M. Platzman,et al.  Microwave localization by two-dimensional random scattering , 1991, Nature.

[7]  S. Girvin,et al.  0 40 73 25 v 1 1 3 Ju l 2 00 4 Circuit Quantum Electrodynamics : Coherent Coupling of a Single Photon to a Cooper Pair Box , 2022 .

[8]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[9]  P. Strack,et al.  Dicke quantum spin glass of atoms and photons. , 2011, Physical review letters.

[10]  A. Houck,et al.  Beyond strong coupling in a multimode cavity , 2015, 1502.02660.

[11]  Yasunobu Nakamura,et al.  Qubit-Assisted Transduction for a Detection of Surface Acoustic Waves near the Quantum Limit. , 2017, Physical review letters.

[12]  L. Milstein,et al.  Surface acoustic wave devices , 1979, IEEE Communications Magazine.

[13]  Luigi Frunzio,et al.  Quantum acoustics with superconducting qubits , 2017, Science.

[14]  J. Ignacio Cirac,et al.  Universal Quantum Transducers Based on Surface Acoustic Waves , 2015, 1504.05127.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[17]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Philip Reinhold,et al.  High-contrast qubit interactions using multimode cavity QED. , 2014, Physical review letters.

[20]  D. Wiersma,et al.  Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide. , 2005, Physical review letters.

[21]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[22]  Hongzi Zhu,et al.  APP , 2019, Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing.

[23]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[24]  E. B. Magnusson,et al.  Surface acoustic wave resonators in the quantum regime , 2015, 1510.04965.

[25]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[26]  Arzhang Ardavan,et al.  Surface acoustic wave devices on bulk ZnO at low temperature , 2014, 1411.5916.

[27]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[28]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[29]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[30]  Anton Frisk Kockum,et al.  Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom , 2014, 1406.0350.

[31]  Matthew D. Shaw,et al.  Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion , 2015, 1503.05135.

[32]  D. Wiersma,et al.  Bose-Einstein condensate in a random potential. , 2004, Physical review letters.

[33]  J. Koch,et al.  Circuit QED lattices: Towards quantum simulation with superconducting circuits , 2012, 1212.2070.

[34]  H. Kimble,et al.  Superradiance for Atoms Trapped along a Photonic Crystal Waveguide. , 2015, Physical review letters.

[35]  Franco Nori,et al.  Circuit quantum acoustodynamics with surface acoustic waves , 2017, Nature Communications.

[36]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[37]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[38]  A. Wallraff,et al.  Fabrication and characterization of superconducting circuit QED devices for quantum computation , 2005, IEEE Transactions on Applied Superconductivity.