Structure and stability of coinage metal fluoride and chloride clusters (MnFn and MnCln, M = Cu, Ag, or Au; n = 1–6)

Calculations in the framework of the density functional theory are performed to study the lowest‐energy isomers of coinage metal fluoride and chloride clusters (MnFn, MnCln, M = Cu, Ag, or Au, n = 1–6). For all calculated species starting from the trimers the most stable structures are found to be cyclic arrangements. However, planar rings are favored in the case of metal fluorides whereas metal chlorides prefer nonplanar cycles. Calculated bond lengths and infrared frequencies are compared with the available experimental data. The nature of the bonding, involving both covalent and ionic contributions, is characterized. The stability and the fragmentation are also investigated. Trimers are found to be particularly stable when considering the Gibbs free energies. © 2012 Wiley Periodicals, Inc.

[1]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[2]  J. Heully,et al.  Ab initio calculations of structural and electronic properties of small silver bromide clusters , 1999 .

[3]  G. Chambaud,et al.  Electronic structure and spectroscopy of monohalides of metals of group I-B , 2002 .

[4]  W. Demtröder,et al.  High‐resolution isotope selective laser spectroscopy of Ag2 molecules , 1993 .

[5]  T. Klapötke,et al.  Intriguing Gold TrifluorideMolecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study , 2000 .

[6]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[7]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[8]  A. Tsipis,et al.  Molecular and electronic structure, magnetotropicity and absorption spectra of benzene-trinuclear copper(I) and silver(I) trihalide columnar binary stacks. , 2012, Inorganic chemistry.

[9]  Hubert Schmidbaur,et al.  The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications , 2000 .

[10]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[11]  Pekka Pyykkö,et al.  Strong Closed-Shell Interactions in Inorganic Chemistry. , 1997, Chemical reviews.

[12]  F. Spiegelman,et al.  Ab initio study of silver bromide AgnBrp(+) clusters (n⩽6,p=n,n−1) , 2001 .

[13]  Abdul-Rahman Allouche,et al.  Gabedit—A graphical user interface for computational chemistry softwares , 2011, J. Comput. Chem..

[14]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[15]  S K Kang,et al.  Copper-catalyzed coupling reaction of terminal alkynes with aryl- and alkenyliodonium salts. , 2001, Organic letters.

[16]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[17]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[18]  Gerry,et al.  The Pure Rotational Spectra of AuCl and AuBr. , 2000, Journal of Molecular Spectroscopy.

[19]  M. Hargittai,et al.  Molecular Structure, Bonding, and Jahn−Teller Effect in Gold Chlorides: Quantum Chemical Study of AuCl3, Au2Cl6, AuCl4-, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6 , 2001 .

[20]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[21]  R. Konings,et al.  Trimer formation of AgI. A gas-phase FT-IR and theoretical study , 2002 .

[22]  V. Schomaker,et al.  An Electron Diffraction Investigation of the Structure of Cuprous Chloride Trimer , 1957 .

[23]  J. Berkowitz,et al.  Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors , 1980 .

[24]  P. Fayet,et al.  The role of small silver clusters in photography , 1986 .

[25]  P. Schwerdtfeger,et al.  Spectroscopic properties for the ground states of AuF, AuF+, AuF2, and Au2F2: A pseudopotential scalar relativistic Mo/ller–Plesset and coupled‐cluster study , 1995 .

[26]  M. Morse Clusters of transition-metal atoms , 1986 .

[27]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[28]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[29]  G. Gigli,et al.  Mass Spectrometric Study of the Vaporization of Cuprous Chloride and the Dissociation Energy of Cu3Cl3, Cu4Cl4, and Cu5Cl5 , 1971 .

[30]  P. Schwerdtfeger,et al.  The molecular structure of different species of cuprous chloride from gas-phase electron diffraction and quantum chemical calculations. , 2003, Chemistry.

[31]  F. Rabilloud,et al.  Adiabatic electron affinities of (AgF)n clusters: Experiment and DFT calculations , 2008 .

[32]  H. Schäfer,et al.  Gleichgewichtsdrucke über AgJ,f + Ag,f , 1973 .

[33]  T. P. Martin,et al.  Matrix isolated copper and silver halide clusters , 1980 .

[34]  P. Jena,et al.  Superhalogen properties of CumCln clusters: theory and experiment. , 2011, The Journal of chemical physics.

[35]  M. Y. Wang,et al.  Electronic structures and chemical bonding in 4d transition metal monohalides , 2007, J. Comput. Chem..

[36]  Robert P. Krawczyk,et al.  A comparison of structure and stability between the group 11 halide tetramers M4X4 (M = Cu, Ag, or Au; X = F, Cl, Br, or I) and the group 11 chloride and bromide phosphanes (XMPH3)4. , 2004, Inorganic chemistry.

[37]  M. Hargittai,et al.  Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X = F, Cl, Br, I). , 2001, Chemistry.

[38]  F. Rabilloud,et al.  Metastable fragmentation of silver bromide clusters , 2001 .

[39]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas–Kroll transformation , 2000 .

[40]  F. Rabilloud,et al.  Ab Initio Study of Neutral and Charged Copper Bromide (CuBr)n(+) Clusters (n = 1–6) , 2012, Journal of Cluster Science.

[41]  Augusto Beléndez,et al.  Mixed phase-amplitude holographic gratings recorded in bleached silver halide materials , 2002 .

[42]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[43]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[44]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[45]  S. Cesaro,et al.  The infrared spectrum of matrix isolated cuprous chloride , 1972 .

[46]  Jun Li,et al.  The mixed cyanide halide Au(I) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding , 2011 .