Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing

[1]  Hui Xiang,et al.  Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean , 2015, Nature Biotechnology.

[2]  Baohui Liu,et al.  Allelic Combinations of Soybean Maturity Loci E1, E2, E3 and E4 Result in Diversity of Maturity and Adaptation to Different Latitudes , 2014, PloS one.

[3]  Q. Song,et al.  Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode1[W][OPEN] , 2014, Plant Physiology.

[4]  T. Joshi,et al.  Major Soybean Maturity Gene Haplotypes Revealed by SNPViz Analysis of 72 Sequenced Soybean Genomes , 2014, PloS one.

[5]  M. Stephens,et al.  fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets , 2014, Genetics.

[6]  Hong-Kyu Choi,et al.  Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[7]  Yang Liu,et al.  Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding , 2013, Nucleic Acids Res..

[8]  Ying Li,et al.  A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity , 2013, Nature Genetics.

[9]  N. Vello,et al.  The genetic base of Brazilian soybean cultivars: evolution over time and breeding implications , 2013, Genetics and molecular biology.

[10]  N. Vello,et al.  Genetic structure and a selected core set of Brazilian soybean cultivars , 2013, Genetics and molecular biology.

[11]  Jun Li,et al.  Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum , 2013, Nature Communications.

[12]  Nancy Wilkins-Diehr Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery , 2013 .

[13]  Baohui Liu,et al.  Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean , 2013, BMC Plant Biology.

[14]  H. Kanamori,et al.  Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes , 2013 .

[15]  Jun Wang,et al.  Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing , 2013, BMC Genomics.

[16]  T. Yamazaki,et al.  Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering , 2012, Proceedings of the National Academy of Sciences.

[17]  T. Sinclair,et al.  Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr) , 2012, Theoretical and Applied Genetics.

[18]  G. Cervigni,et al.  Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant , 2012, Euphytica.

[19]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[20]  Trupti Joshi,et al.  Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics , 2012, BMC Genomics.

[21]  S. Hochreiter,et al.  cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate , 2012, Nucleic acids research.

[22]  T. Hwang,et al.  Identification of QTL controlling post-flowering period in soybean , 2012, Breeding science.

[23]  Chris Smallwood Detection of Quantitative Trait Loci for Marker-Assisted Selection of Soybean Isoflavone Genistein , 2012 .

[24]  Lin Fang,et al.  Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes , 2011, Nature Biotechnology.

[25]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[26]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[27]  S. Tabata,et al.  A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering , 2011, Genetics.

[28]  B. S. Manjunath,et al.  The iPlant Collaborative: Cyberinfrastructure for Plant Biology , 2011, Front. Plant Sci..

[29]  J. Schmutz,et al.  Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome , 2010, Proceedings of the National Academy of Sciences.

[30]  Bo Wang,et al.  Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection , 2010, Nature Genetics.

[31]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[32]  Yun Lian,et al.  QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). , 2010 .

[33]  Chunying Liu,et al.  Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). , 2010, Journal of genetics and genomics = Yi chuan xue bao.

[34]  Xiaolong Yan,et al.  QTL analysis of root traits as related to phosphorus efficiency in soybean. , 2010, Annals of botany.

[35]  Henry T. Nguyen,et al.  Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C , 2010, Theoretical and Applied Genetics.

[36]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[37]  Steven B. Cannon,et al.  SoyBase, the USDA-ARS soybean genetics and genomics database , 2009, Nucleic Acids Res..

[38]  San-xiong Fu,et al.  Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. , 2009, Journal of genetics and genomics = Yi chuan xue bao.

[39]  S. Tabata,et al.  Map-Based Cloning of the Gene Associated With the Soybean Maturity Locus E3 , 2009, Genetics.

[40]  H. Nguyen,et al.  Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits , 2009, Theoretical and Applied Genetics.

[41]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[42]  Luis Fernando Alliprandini,et al.  Understanding Soybean Maturity Groups in Brazil: Environment, Cultivar Classification, and Stability , 2009 .

[43]  A. Cardinal,et al.  Mapping and Comparison of Quantitative Trait Loci for Oleic Acid Seed Content in Two Segregating Soybean Populations , 2009 .

[44]  Henry T. Nguyen,et al.  QTL, additive and epistatic effects for SCN resistance in PI 437654 , 2009, Theoretical and Applied Genetics.

[45]  M. Kim,et al.  Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.] , 2009, Euphytica.

[46]  J. Abe,et al.  Genetic relationship between lipid content and linolenic acid concentration in soybean seeds , 2008 .

[47]  Richard M. Clark,et al.  Sequencing of natural strains of Arabidopsis thaliana with short reads. , 2008, Genome research.

[48]  Baohui Liu,et al.  Genetic Redundancy in Soybean Photoresponses Associated With Duplication of the Phytochrome A Gene , 2008, Genetics.

[49]  Sonja W. Scholz,et al.  Genomewide SNP assay reveals mutations underlying Parkinson disease , 2008, Human mutation.

[50]  P. Schnable,et al.  SNP discovery via 454 transcriptome sequencing , 2007, The Plant journal : for cell and molecular biology.

[51]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[52]  J. Gai,et al.  A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean , 2007 .

[53]  R. Nelson,et al.  QTL associated with yield in three backcross-derived populations of soybean , 2007 .

[54]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[55]  K. Chase,et al.  Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.) , 2006, Theoretical and Applied Genetics.

[56]  K. Harada,et al.  QTL Analysis of Resistance to Soybean Cyst Nematode Race 3 in Soybean Cultivar Toyomusume , 2006 .

[57]  D. Campion,et al.  APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy , 2006, Nature Genetics.

[58]  S. T. Kang,et al.  Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean , 2005 .

[59]  D. Sleper,et al.  Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763 , 2005, Theoretical and Applied Genetics.

[60]  Daniel S. Katz,et al.  Pegasus: A framework for mapping complex scientific workflows onto distributed systems , 2005, Sci. Program..

[61]  D. Hyten,et al.  Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci , 2004 .

[62]  D. Hyten,et al.  Seed quality QTL in a prominent soybean population , 2004, Theoretical and Applied Genetics.

[63]  B. Diers,et al.  Near Isogenic Lines Confirm a Soybean Cyst Nematode Resistance Gene from PI 88788 on Linkage Group J , 2004 .

[64]  R. Shoemaker,et al.  Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean , 2001, Molecular Breeding.

[65]  D. Ashley,et al.  Molecular markers associated with seed weight in two soybean populations , 1996, Theoretical and Applied Genetics.

[66]  N. Young,et al.  Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode , 1996, Theoretical and Applied Genetics.

[67]  J. Gai,et al.  QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers , 2004, Theoretical and Applied Genetics.

[68]  K. Harada,et al.  Analysis of Quantitative Trait Loci for Protein and Lipid Contents in Soybean Seeds Using Recombinant Inbred Lines , 2003 .

[69]  David A. Sleper,et al.  Mapping Resistance to Multiple Races of Heterodera glycines in Soybean PI 89772 , 2001 .

[70]  K. Eskridge,et al.  Identification of QTLs for Resistance to Sclerotinia sclerotiorum in Soybean , 2001 .

[71]  R. Shoemaker,et al.  Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. , 2001, Molecular plant-microbe interactions : MPMI.

[72]  R. Shoemaker,et al.  Restriction fragment length polymorphism analysis of soybean fatty acid content , 1992 .

[73]  R. L. Bernard Two Genes Affecting Stem Termination in Soybeans1 , 1972 .