Reduced basis method for parametrized optimal control problems governed by PDEs

This master thesis aims at the development, analysis and computer implementation of effcient numerical methods for the solution of optimal control problems based on parametrized partial differential equations. Our goal isfto develop a new approach based on suitable model reduction paradigm --the reduced basis method (RB)-- for the rapid and reliable solution of control problems which may occur in several engineering contexts. In particular, we develop the methodology for parametrized quadratic optimization problem with either coercive elliptic equations or Stokes equations as constraints. Firstly, we recast the optimal control problem in the framework of mixed variational problems in order to take advantage of the already developed RB theory for Stokes-type problems. Then the usual ingredients of the RB methodology are provided: a Galerkin projection onto a low-dimensional space of basis functions properly selected by an adaptive procedure; an affine parametric dependence enabling to perform competitive Offine-Online splitting in the computational procedure; an efficient and rigorous a posteriori error estimation on the state, control and adjoint variables as well as on the cost functional. The reduction scheme is applied to several numerical tests conrming the theoretical results and demonstrating the efficiency of the proposed technique. Moreover an application to an (idealized) inverse problem in haemodynamics is discussed, showing the versatility and potentiality of the method in tackling parametrized optimal control problems that could arise in a a broad variety of application contexts.

[1]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[2]  Karl Kunisch,et al.  A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  Mark Kärcher,et al.  Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems , 2011 .

[5]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[6]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[7]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[8]  Sugata Sen,et al.  Reduced basis approximation and a posteriori error estimation for non-coercive elliptic problems : applications to acoustics , 2007 .

[9]  Joachim Schöberl,et al.  A Robust Multigrid Method for Elliptic Optimal Control Problems , 2011, SIAM J. Numer. Anal..

[10]  Gianluigi Rozza,et al.  On optimization, control and shape design of an arterial bypass , 2005 .

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[14]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[15]  Barbara I. Wohlmuth,et al.  A Reduced Basis Method for Parametrized Variational Inequalities , 2012, SIAM J. Numer. Anal..

[16]  Vedat S. Arpaci,et al.  Conduction Heat Transfer , 2002 .

[17]  D. Braess,et al.  On the numerical solution of the biharmonic equation and the role of squaring matrices , 1986 .

[18]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[19]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[20]  Martin Stoll,et al.  All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..

[21]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[22]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[23]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[24]  Karen Veroy,et al.  REDUCED BASIS A POSTERIORI ERROR BOUNDS FOR THE STOKES EQUATIONS IN PARAMETRIZED DOMAINS: A PENALTY APPROACH , 2010 .

[25]  A. Wathen,et al.  All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .

[26]  Luca Dedè Reduced Basis Method and Error Estimation for Parametrized Optimal Control Problems with Control Constraints , 2012, J. Sci. Comput..

[27]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[28]  Andrew J. Wathen,et al.  Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..

[29]  Martin Stoll,et al.  All-at-once preconditioning in PDE-constrained optimization , 2010, Kybernetika.

[30]  Gianluigi Rozza,et al.  Reduced Basis Approximation for Shape Optimization in Thermal Flows with a Parametrized Polynomial Geometric Map , 2010 .

[31]  M. Gunzburger,et al.  Least-squares finite-element methods for optimization and control problems for the stokes equations , 2003 .

[32]  Alfio Quarteroni,et al.  Optimal Control and Numerical Adaptivity for Advection-Diffusion Equations , 2005 .

[33]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[34]  Timo Tonn,et al.  Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .

[35]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[36]  Nicholas I. M. Gould,et al.  Preconditioning Saddle-Point Systems with Applications in Optimization , 2010, SIAM J. Sci. Comput..

[37]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[38]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[39]  Huynh Dinh,et al.  Reduced Basis Approximation and Application to Fracture Problems , 2007 .

[40]  R. Fletcher Practical Methods of Optimization , 1988 .

[41]  Anthony T. Patera,et al.  A natural-norm Successive Constraint Method for inf-sup lower bounds , 2010 .

[42]  W. Rudin Real and complex analysis , 1968 .

[43]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[44]  Anthony T. Patera,et al.  Reduced basis approximation and a posteriori error estimation for stress intensity factors , 2007 .

[45]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[46]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[47]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[48]  Luca Dedè,et al.  Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[49]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[50]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[51]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[52]  Michele Benzi,et al.  Solution of linear systems from an optimal control problem arising in wind simulation , 2010, Numer. Linear Algebra Appl..

[53]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[54]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..