Chapter 2. Methods and data

This chapter describes the basics of the fundamental techniques used in this thesis. It is divided in three parts: (1) complex network tools applied to metabolism, (2) description of Flux Balance Analysis (FBA) -used to compute metabolic fluxes at steady stateand of Flux Variability Analysis -a variant of FBA to bound minimum and maximum fluxes for each reactionand (3) a description of all the genome-scale metabolic reconstructions analysed in this thesis.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Alexander Bockmayr,et al.  Fast thermodynamically constrained flux variability analysis , 2013, Bioinform..

[3]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[4]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[5]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[6]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[7]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[8]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[9]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[10]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[11]  M. Ángeles Serrano,et al.  Essential Plasticity and Redundancy of Metabolism Unveiled by Synthetic Lethality Analysis , 2013, PLoS Comput. Biol..

[12]  Zeba Wunderlich,et al.  Using the topology of metabolic networks to predict viability of mutant strains. , 2006, Biophysical journal.

[13]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[14]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[15]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[16]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[17]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[18]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[19]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[20]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[21]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[22]  Adam Rose,et al.  Sources of change in energy use in the U.S. economy, 1972–1982: A structural decomposition analysis , 1991 .

[23]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  B. W. Ang,et al.  Decomposition analysis for policymaking in energy:: which is the preferred method? , 2004 .

[25]  Antje Chang,et al.  BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA , 2012, Nucleic Acids Res..

[26]  D. Machado,et al.  Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. , 2011, IET systems biology.

[27]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[28]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[29]  Adam M. Feist,et al.  Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli , 2013, Molecular systems biology.

[30]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[31]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[32]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  B. Palsson,et al.  Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. , 2004, Genome research.

[34]  Joachim Selbig,et al.  Evolutionary significance of metabolic network properties , 2011, Journal of The Royal Society Interface.

[35]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[36]  R. Guimerà,et al.  Modular coherence of protein dynamics in yeast cell polarity system , 2011, Proceedings of the National Academy of Sciences.

[37]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[38]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[40]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[41]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[42]  B. Palsson,et al.  Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors. , 1993, Journal of theoretical biology.

[43]  Bernhard O. Palsson,et al.  Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction , 2009, BMC Systems Biology.

[44]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[45]  D. Fell,et al.  Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. , 1999, Trends in biotechnology.

[46]  M. Serrano,et al.  Generalized percolation in random directed networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  An-Ping Zeng,et al.  Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms , 2003, Bioinform..

[48]  Ali R. Zomorrodi,et al.  Genome-scale gene/reaction essentiality and synthetic lethality analysis , 2009, Molecular systems biology.

[49]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[50]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[51]  Edda Klipp,et al.  Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling , 2013, Molecular systems biology.

[52]  Java Binding,et al.  GNU Linear Programming Kit , 2011 .

[53]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[54]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[55]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.

[56]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Bernhard O Palsson,et al.  Network-based analysis of metabolic regulation in the human red blood cell. , 2003, Journal of theoretical biology.

[58]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[60]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[61]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[62]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[63]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[64]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[65]  B. Palsson,et al.  The underlying pathway structure of biochemical reaction networks. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Serrano,et al.  Assessing the significance of knockout cascades in metabolic networks , 2012, 1210.2908.

[67]  J. Stelling,et al.  Genome‐scale metabolic networks , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[68]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[69]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[70]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[71]  Evelyn Fox Keller,et al.  Revisiting "scale-free" networks. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[72]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[73]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[74]  Sang Yup Lee,et al.  Metabolite essentiality elucidates robustness of Escherichia coli metabolism , 2007, Proceedings of the National Academy of Sciences.

[75]  A. Barabasi,et al.  Predicting synthetic rescues in metabolic networks , 2008, Molecular systems biology.

[76]  A. Wagner Distributed robustness versus redundancy as causes of mutational robustness. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[78]  B. Palsson,et al.  Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. , 2000, Biotechnology and bioengineering.

[79]  R. Tanaka,et al.  Scale-rich metabolic networks. , 2005, Physical review letters.

[80]  M. Ángeles Serrano,et al.  Structural Efficiency of Percolated Landscapes in Flow Networks , 2007, PloS one.

[81]  M. Ángeles Serrano,et al.  Predicting effects of structural stress in a genome-reduced model bacterial metabolism , 2012, Scientific Reports.

[82]  E. Papoutsakis,et al.  Genome‐scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis , 2008, Biotechnology and bioengineering.

[83]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[84]  A. Wagner,et al.  Superessential reactions in metabolic networks , 2012, Proceedings of the National Academy of Sciences.

[85]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[86]  Julio M. Ottino,et al.  Cascading failure and robustness in metabolic networks , 2008, Proceedings of the National Academy of Sciences.

[87]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[88]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Joachim Selbig,et al.  Mass-balanced randomization of metabolic networks , 2011, Bioinform..