Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers

[1]  Joseph H. Dumont,et al.  Unusually High Concentration of Alkyl Ammonium Hydroxide in the Cation-Hydroxide-Water Co-adsorbed Layer on Pt. , 2019, ACS applied materials & interfaces.

[2]  D. Aili,et al.  Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers , 2019, Energy & Environmental Science.

[3]  Cy H. Fujimoto,et al.  Alkaline Stability of Quaternized Diels–Alder Polyphenylenes , 2019, Macromolecules.

[4]  P. Kohl,et al.  Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm2) in Hydrogen/Oxygen Alkaline Fuel Cells , 2019, Journal of The Electrochemical Society.

[5]  Dario R. Dekel,et al.  Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability , 2019, Nature Communications.

[6]  Chulsung Bae,et al.  Adsorption of Polyaromatic Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells , 2019, Chemistry of Materials.

[7]  Brian P. Setzler,et al.  Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells , 2019, Nature Energy.

[8]  Brian P. Setzler,et al.  A Roadmap to Low‐Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers , 2019, Advanced materials.

[9]  Cy H. Fujimoto,et al.  Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. , 2019, ACS applied materials & interfaces.

[10]  M. Tuckerman,et al.  Synthesis of Aromatic Anion Exchange Membranes by Friedel–Crafts Bromoalkylation and Cross-Linking of Polystyrene Block Copolymers , 2019, Macromolecules.

[11]  Y. Kim,et al.  Impact of ionomer adsorption on alkaline hydrogen oxidation activity and fuel cell performance , 2018, Current Opinion in Electrochemistry.

[12]  Claudia W. Narvaez Villarrubia,et al.  Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm−2 power density , 2018 .

[13]  Y. Kim,et al.  Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance – a topical review , 2018 .

[14]  R. Masel,et al.  Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes , 2018, Front. Chem..

[15]  M. Chatenet,et al.  Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles , 2018 .

[16]  Claudia W. Narvaez Villarrubia,et al.  Toward Improved Alkaline Membrane Fuel Cell Performance Using Quaternized Aryl-Ether Free Polyaromatics , 2018 .

[17]  Travis J Omasta,et al.  Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs , 2018 .

[18]  Hartmut Spliethoff,et al.  Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review , 2018 .

[19]  K. Amine,et al.  Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte , 2018 .

[20]  M. Hickner,et al.  Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes , 2018 .

[21]  Dmitri Bessarabov,et al.  Low cost hydrogen production by anion exchange membrane electrolysis: A review , 2018 .

[22]  K. Artyushkova,et al.  Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells , 2017 .

[23]  A. Hawkes,et al.  Future cost and performance of water electrolysis: An expert elicitation study , 2017 .

[24]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[25]  Felix N. Büchi,et al.  Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development , 2017 .

[26]  Zhiyong Tang,et al.  Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution , 2016, Nature Energy.

[27]  Y. Kim,et al.  Cation-Hydroxide-Water Coadsorption Inhibits the Alkaline Hydrogen Oxidation Reaction. , 2016, The journal of physical chemistry letters.

[28]  Kwan-Soo Lee,et al.  An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs , 2016, Nature Energy.

[29]  T. Fujigaya,et al.  Effects of operating conditions on performance of high-temperature polymer electrolyte water electrolyzer , 2016 .

[30]  Hubert A. Gasteiger,et al.  Influence of Ionomer Content in IrO 2 /TiO 2 Electrodes on PEM Water Electrolyser Performance , 2016 .

[31]  D. Aili,et al.  Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations , 2016 .

[32]  Bingjun Xu,et al.  Structure-Property Relationships in Hydroxide-Exchange Membranes with Cation Strings and High Ion-Exchange Capacity. , 2015, ChemSusChem.

[33]  Marc T. M. Koper,et al.  In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. , 2015, Journal of the American Chemical Society.

[34]  Dennis van der Vliet,et al.  NSTF Advances for PEM Electrolysis - the Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers , 2015 .

[35]  Chulsung Bae,et al.  Robust Hydroxide Ion Conducting Poly(biphenyl alkylene)s for Alkaline Fuel Cell Membranes. , 2015, ACS macro letters.

[36]  L. J. Berchmans,et al.  Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production , 2015 .

[37]  Yoong-Kee Choe,et al.  Alkaline Stability of Benzyl Trimethyl Ammonium Functionalized Polyaromatics: A Computational and Experimental Study , 2014 .

[38]  Plamen Atanassov,et al.  Anion-exchange membranes in electrochemical energy systems , 2014 .

[39]  Keryn Lian,et al.  Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors , 2014 .

[40]  W. Mustain,et al.  Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells , 2014 .

[41]  K. Ayers,et al.  Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis , 2014 .

[42]  Michael A. Hickner,et al.  Anion exchange membranes: Current status and moving forward , 2013 .

[43]  M. Hibbs Alkaline stability of poly(phenylene)‐based anion exchange membranes with various cations , 2013 .

[44]  Chaoyang Wang,et al.  Characterization of Anion Exchange Membrane Technology for Low Cost Electrolysis , 2013 .

[45]  Lin Zhuang,et al.  First implementation of alkaline polymer electrolyte water electrolysis working only with pure water , 2012 .

[46]  Chaoyang Wang,et al.  Solid-state water electrolysis with an alkaline membrane. , 2012, Journal of the American Chemical Society.

[47]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[48]  Fikile R. Brushett,et al.  Carbonate resilience of flowing electrolyte-based alkaline fuel cells , 2011 .

[49]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[50]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[51]  Mathias Schulze,et al.  LONG TERM OPERATION OF AFC ELECTRODES WITH CO2 CONTAINING GASES , 2004 .

[52]  Erich Gülzow,et al.  Alkaline fuel cells: a critical view , 1996 .