Sketches with Curvature: The Curve Indicator Random Field and Markov Processes

While complaints about typical edge operators are common, proposals articulating a notion of the "perfect" edge map are comparatively rare, hindering the improvement of contour enhancement techniques. To address this situation, we suggest that one objective of visual contour computation is the estimation of a clean sketch from a corrupted rendition, the latter modeling noisy and low contrast edge or line operator responses to an image. Our formal model of this clean sketch is the curve indicator random field (CIRF), whose role is to provide a basis for defining edge likelihood models by eliminating the parameter along each curve to create an image of curves. For curves modeled with stationary Markov processes, this ideal edge prior is non-Gaussian and its moment generating functional has a form closely related to the Feynman-Kac formula. This sketch model leads to a nonlinear, minimum mean squared error contour enhancement filter that requires the solution of two elliptic partial differential equations. The framework is also independent of the order of the contour model, allowing us to introduce a Markov process model for contour curvature. We analyze the distribution of such curves and show that its mode is the Euler spiral, a curve minimizing changes in curvature. Example computations using the contour enhancement filter with the curvature-based contour model are provided, highlighting how the filter is curvature-selective even when curvature is absent in the input.

[1]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Radu Horaud,et al.  Figure-Ground Discrimination: A Combinatorial Optimization Approach , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[5]  Ronen Basri,et al.  Completion Energies and Scale , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Lance R. Williams,et al.  Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape , 1998, Neural Computation.

[7]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[8]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[9]  S. Zucker,et al.  The curve indicator random field , 2001 .

[10]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[11]  Lance R. Williams,et al.  A rotation and translation invariant discrete saliency network , 2001, Biological Cybernetics.

[12]  Zhuowen Tu,et al.  Parsing Images into Region and Curve Processes , 2002, ECCV.

[13]  Steven W. Zucker,et al.  Two Stages of Curve Detection Suggest Two Styles of Visual Computation , 1989, Neural Computation.

[14]  Song-Chun Zhu,et al.  Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Jan J. Koenderink,et al.  Two-dimensional curvature operators , 1988 .

[16]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[18]  Azriel Rosenfeld,et al.  An Application of Relaxation Labeling to Line and Curve Enhancement , 1977, IEEE Transactions on Computers.

[19]  J. Nadal,et al.  Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows , 1998, cond-mat/0107314.

[20]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[21]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  J. Ian Richards,et al.  Theory of Distributions: A general definition of multiplication and convolution for distributions , 1990 .

[23]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[24]  Albert N. Shiryaev,et al.  On a Method of Calculation of Semi-Invariants , 1959 .

[25]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[26]  Max A. Viergever,et al.  Invertible Orientation Bundles on 2D Scalar Images , 1997, Scale-Space.

[27]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  D. Mumford Elastica and Computer Vision , 1994 .

[29]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[30]  E. B. Dynkin,et al.  Markov processes as a tool in field theory , 1983 .

[31]  Bernt Øksendal,et al.  Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .

[32]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Josiane Zerubia,et al.  A Markovian model for contour grouping , 1995, Pattern Recognit..

[34]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[35]  Lance R. Williams,et al.  Computing Stochastic Completion Fields in Linear-Time Using a Resolution Pyramid , 1997, Comput. Vis. Image Underst..

[36]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[37]  Lance R. Williams,et al.  Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions , 2000, Journal of Mathematical Imaging and Vision.

[38]  Steven W. Zucker,et al.  Radial Projection: An Efficient Update Rule for Relaxation Labeling , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[40]  Norbert Krüger,et al.  Collinearity and Parallelism are Statistically Significant Second-Order Relations of Complex Cell Responses , 1998, Neural Processing Letters.

[41]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  E. Dynkin,et al.  Gaussian and non-Gaussian random fields associated with Markov processes , 1984 .

[43]  Arjen van der Schaaf,et al.  Natural image statistics and visual processing , 1998 .

[44]  Steven W. Zucker,et al.  Toward discrete geometric models for early vision , 1994 .

[45]  D. Mumford Algebraic Geometry and Its Applications , 1994 .

[46]  Kenji Okajima A model visual cortex incorporating intrinsic horizontal neuronal connections , 1996, Neural Networks.

[47]  D. Ruderman The statistics of natural images , 1994 .

[48]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[49]  R. Khas'minskii,et al.  On Positive Solutions of the Equation $\mathfrak{A}U + Vu = 0$ , 1959 .

[50]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[51]  Steven W. Zucker,et al.  Logical/Linear Operators for Image Curves , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[53]  S. Zucker,et al.  Endstopped neurons in the visual cortex as a substrate for calculating curvature , 1987, Nature.

[54]  James H. Elder,et al.  Contour grouping with strong prior models , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[55]  J. Pitman,et al.  Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process , 1999 .

[56]  D. Vere-Jones Markov Chains , 1972, Nature.