MINIMUM RANK, MAXIMUM NULLITY, AND ZERO FORCING NUMBER OF SIMPLE DIGRAPHS

A simple digraph describes the off-diagonal zero-nonzero pattern of a family of (not necessarily symmetric) matrices. Minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number is an upper bound for maximum nullity. Cut-vertex reduction formulas for minimum rank and zero forcing number for simple digraphs are established. The effect of deletion of a vertex on minimum rank or zero forcing number is analyzed, and simple digraphs having very low or very high zero forcing number are characterized.