Fast nearest neighbor retrieval for bregman divergences

We present a data structure enabling efficient nearest neighbor (NN) retrieval for bregman divergences. The family of bregman divergences includes many popular dissimilarity measures including KL-divergence (relative entropy), Mahalanobis distance, and Itakura-Saito divergence. These divergences present a challenge for efficient NN retrieval because they are not, in general, metrics, for which most NN data structures are designed. The data structure introduced in this work shares the same basic structure as the popular metric ball tree, but employs convexity properties of bregman divergences in place of the triangle inequality. Experiments demonstrate speedups over brute-force search of up to several orders of magnitude.

[1]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[2]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[3]  R. Gray,et al.  Distortion measures for speech processing , 1980 .

[4]  Jeffrey K. Uhlmann,et al.  Satisfying General Proximity/Similarity Queries with Metric Trees , 1991, Inf. Process. Lett..

[5]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[6]  Peter N. Yianilos,et al.  Data structures and algorithms for nearest neighbor search in general metric spaces , 1993, SODA '93.

[7]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Andrew W. Moore,et al.  The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data , 2000, UAI.

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[11]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[12]  Andrew W. Moore,et al.  An Investigation of Practical Approximate Nearest Neighbor Algorithms , 2004, NIPS.

[13]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[14]  Baba C. Vemuri,et al.  Efficient Shape Indexing Using an Information Theoretic Representation , 2005, CIVR.

[15]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[16]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[17]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[18]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[19]  Nuno Vasconcelos,et al.  Bridging the Gap: Query by Semantic Example , 2007, IEEE Transactions on Multimedia.

[20]  Richard Nock,et al.  On Bregman Voronoi diagrams , 2007, SODA '07.

[21]  Sudipto Guha,et al.  Sketching information divergences , 2007, Machine Learning.

[22]  Stephen M. Omohundro,et al.  Five Balltree Construction Algorithms , 2009 .