Quasi-Molecular Fluorescence from Graphene Oxide

[1]  Vivek B Shenoy,et al.  Structural evolution during the reduction of chemically derived graphene oxide. , 2010, Nature chemistry.

[2]  Xin Yan,et al.  Triplet States and electronic relaxation in photoexcited graphene quantum dots. , 2010, Nano letters.

[3]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[4]  Andrei N. Khlobystov,et al.  UV-vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter , 2010 .

[5]  P. Kim,et al.  Electron transport in disordered graphene nanoribbons. , 2009, Physical review letters.

[6]  Chun-Wei Chen,et al.  Blue photoluminescence from chemically derived graphene oxide. , 2010, Advanced materials.

[7]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[8]  K. Novoselov,et al.  Making graphene luminescent by oxygen plasma treatment. , 2009, ACS nano.

[9]  Wei Gao,et al.  New insights into the structure and reduction of graphite oxide. , 2009, Nature chemistry.

[10]  J. Moodera,et al.  Observation of the triplet exciton in EuS-coated single-walled nanotubes. , 2009, Nature nanotechnology.

[11]  E. J. Mele,et al.  Photoluminescence and band gap modulation in graphene oxide , 2009 .

[12]  C. Stampfer,et al.  Observation of excited states in a graphene quantum dot , 2008, 0807.2710.

[13]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[14]  Guoliang Zhang,et al.  Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation , 2008 .

[15]  Zhuang Liu,et al.  Nano-graphene oxide for cellular imaging and drug delivery , 2008, Nano research.

[16]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[17]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[18]  Pyrene-1-Carboxylate in Water and Glycerol Solutions: Origin of the Change of pK Upon Excitation , 2007, Journal of Fluorescence.

[19]  R. Coleman,et al.  Protonation of excited state pyrene-1-carboxylate by phosphate and organic acids in aqueous solution studied by fluorescence spectroscopy. , 2006, Biophysical journal.

[20]  G. Kopidakis,et al.  Electronic and optical properties of a-C from tight-binding molecular dynamics simulations , 2005 .

[21]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[22]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[23]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[24]  John Robertson,et al.  Nature of disorder and localization in amorphous carbon , 1998 .

[25]  J. K. Thomas,et al.  Solvent effects on the photophysical properties of pyrene-3-carboxylic acid , 1988 .

[26]  Robertson,et al.  Electronic and atomic structure of amorphous carbon. , 1987, Physical review. B, Condensed matter.

[27]  Dirk C. Keene Acknowledgements , 1975 .

[28]  T. C. Werner,et al.  Charge-transfer effects on the absorption and fluorescence spectra of anthroic acids , 1970 .

[29]  T. C. Werner,et al.  Fluorescence of 9-anthroic acid and its esters. Environmental effects on excited-state behavior , 1969 .

[30]  G. Porter,et al.  Acidity constants of aromatic carboxylic acids in the S1 state , 1968 .

[31]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .