Speculative Approximations for Terascale Distributed Gradient Descent Optimization
暂无分享,去创建一个
[1] Marc'Aurelio Ranzato,et al. Large Scale Distributed Deep Networks , 2012, NIPS.
[2] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[3] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[4] Tim Kraska,et al. MLI: An API for Distributed Machine Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.
[5] Jerry Nedelman,et al. Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..
[6] Guy E. Blelloch,et al. GraphChi: Large-Scale Graph Computation on Just a PC , 2012, OSDI.
[7] Fei Xu,et al. The DBO database system , 2008, SIGMOD Conference.
[8] Christopher Ré,et al. DimmWitted: A Study of Main-Memory Statistical Analytics , 2014, Proc. VLDB Endow..
[9] Peter J. Haas,et al. Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.
[10] Ohad Shamir,et al. Optimal Distributed Online Prediction Using Mini-Batches , 2010, J. Mach. Learn. Res..
[11] Ion Stoica,et al. Blink and It's Done: Interactive Queries on Very Large Data , 2012, Proc. VLDB Endow..
[12] Helen J. Wang,et al. Online aggregation , 1997, SIGMOD '97.
[13] Fei Xu,et al. Turbo-Charging Estimate Convergence in DBO , 2009, Proc. VLDB Endow..
[14] Chris Jermaine,et al. Scalable approximate query processing with the DBO engine , 2007, SIGMOD '07.
[15] Peter J. Haas,et al. Ripple joins for online aggregation , 1999, SIGMOD '99.
[16] Florin Rusu,et al. Scalable I/O-bound parallel incremental gradient descent for big data analytics in GLADE , 2013, DanaC '13.
[17] Suman Nath,et al. PR-join: a non-blocking join achieving higher early result rate with statistical guarantees , 2010, SIGMOD Conference.
[18] Luis Leopoldo Perez,et al. A comparison of platforms for implementing and running very large scale machine learning algorithms , 2014, SIGMOD Conference.
[19] Jian Pei,et al. On Pruning for Top-K Ranking in Uncertain Databases , 2011, Proc. VLDB Endow..
[20] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[21] Florin Rusu,et al. Speculative Approximations for Terascale Analytics , 2014, ArXiv.
[22] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[23] Joseph M. Hellerstein,et al. Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..
[24] Christopher Ré,et al. Towards a unified architecture for in-RDBMS analytics , 2012, SIGMOD Conference.
[25] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[26] Jeffrey F. Naughton,et al. A scalable hash ripple join algorithm , 2002, SIGMOD '02.
[27] Chris Jermaine,et al. Online aggregation for large MapReduce jobs , 2011, Proc. VLDB Endow..
[28] Yu Cheng,et al. GLADE: big data analytics made easy , 2012, SIGMOD Conference.
[29] Peter J. Haas,et al. Simulation of database-valued markov chains using SimSQL , 2013, SIGMOD '13.
[30] Dimitri P. Bertsekas,et al. Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey , 2015, ArXiv.
[31] Joseph E. Gonzalez,et al. GraphLab: A New Parallel Framework for Machine Learning , 2010 .
[32] John Langford,et al. A reliable effective terascale linear learning system , 2011, J. Mach. Learn. Res..
[33] Florin Rusu,et al. GLADE: a scalable framework for efficient analytics , 2012, OPSR.
[34] Peter J. Haas,et al. Large-sample and deterministic confidence intervals for online aggregation , 1997, Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150).
[35] Ohad Shamir,et al. Optimal Distributed Online Prediction , 2011, ICML.
[36] Joseph M. Hellerstein,et al. CONTROL: continuous output and navigation technology with refinement on-line , 1998, SIGMOD '98.
[37] Beng Chin Ooi,et al. Distributed Online Aggregation , 2009, Proc. VLDB Endow..
[38] Kunle Olukotun,et al. OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning , 2011, ICML.
[39] Ameet Talwalkar,et al. Knowing when you're wrong: building fast and reliable approximate query processing systems , 2014, SIGMOD Conference.
[40] Shirish Tatikonda,et al. SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[41] Joseph M. Hellerstein,et al. GraphLab: A New Framework For Parallel Machine Learning , 2010, UAI.
[42] Alexander J. Smola,et al. Parallelized Stochastic Gradient Descent , 2010, NIPS.
[43] Chris Jermaine,et al. The Sort-Merge-Shrink join , 2006, TODS.
[44] Florin Rusu,et al. PF-OLA: a high-performance framework for parallel online aggregation , 2012, Distributed and Parallel Databases.
[45] Joseph M. Hellerstein,et al. MapReduce Online , 2010, NSDI.
[46] Beng Chin Ooi,et al. Continuous sampling for online aggregation over multiple queries , 2010, SIGMOD Conference.