Graph homomorphisms via vector colorings
暂无分享,去创建一个
Chris D. Godsil | David E. Roberson | Robert Sámal | Brendan Rooney | Antonios Varvitsiotis | C. Godsil | D. Roberson | Robert Šámal | A. Varvitsiotis | Brendan Rooney | Antonios Varvitsiotis
[1] S. Stahl. n-Tuple colorings and associated graphs , 1976 .
[2] Jaroslav Nesetril,et al. Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.
[3] Jaroslav Nesetril,et al. Homomorphisms of derivative graphs , 1971, Discret. Math..
[4] A. Neumaier,et al. Distance Regular Graphs , 1989 .
[5] Chris Godsil,et al. Erdős-Ko-Rado Theorems: Algebraic Approaches , 2015 .
[6] Peter Jonsson,et al. An Approximability-related Parameter on Graphs - Properties and Applications , 2015, Discret. Math. Theor. Comput. Sci..
[7] G. Hahn,et al. Graph homomorphisms: structure and symmetry , 1997 .
[8] Igor Pak,et al. Constructing Uniquely Realizable Graphs , 2013, Discret. Comput. Geom..
[9] Chris D. Godsil,et al. Problems in Algebraic Combinatorics , 1995, Electron. J. Comb..
[10] Chris D. Godsil,et al. Colouring lines in projective space , 2006, J. Comb. Theory, Ser. A.
[11] R. McEliece,et al. The Lovasz bound and some generalizations , 1978 .
[12] Jaroslav Neetil. Homomorphisms of derivative graphs , 1971 .
[13] Peter J. Cameron,et al. CORES OF SYMMETRIC GRAPHS , 2008, Journal of the Australian Mathematical Society.
[14] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[15] Walter Keller-Gehrig,et al. Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..
[16] László Babai,et al. Spectra of Cayley graphs , 1979, J. Comb. Theory B.
[17] Jaroslav Nesetril,et al. The core of a graph , 1992, Discret. Math..
[18] Jaroslav Nesetril,et al. On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.
[19] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[20] Robert Sámal,et al. Cubical coloring - fractional covering by cuts and semidefinite programming , 2009, Discret. Math. Theor. Comput. Sci..
[21] M. Laurent,et al. Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property , 2013, 1301.6616.
[22] David E. Roberson,et al. Sabidussi versus Hedetniemi for three variations of the chromatic number , 2013, Comb..
[23] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[24] David R. Karger,et al. Approximate graph coloring by semidefinite programming , 1998, JACM.
[25] David E. Roberson,et al. Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings , 2015, Discrete & Computational Geometry.
[26] David E. Roberson,et al. Homomorphisms of Strongly Regular Graphs , 2016, Electron. Notes Discret. Math..
[27] L. Lovász. Spectra of graphs with transitive groups , 1975 .