Graph homomorphisms via vector colorings

In this paper we study the existence of homomorphisms $G\to H$ using semidefinite programming. Specifically, we use the vector chromatic number of a graph, defined as the smallest real number $t \ge 2$ for which there exists an assignment of unit vectors $i\mapsto p_i$ to its vertices such that $\langle p_i, p_j\rangle\le -1/(t-1),$ when $i\sim j$. Our approach allows to reprove, without using the Erdős-Ko-Rado Theorem, that for $n>2r$ the Kneser graph $K_{n:r}$ and the $q$-Kneser graph $qK_{n:r}$ are cores, and furthermore, that for $n/r = n'/r'$ there exists a homomorphism $K_{n:r}\to K_{n':r'}$ if and only if $n$ divides $n'$. In terms of new applications, we show that the even-weight component of the distance $k$-graph of the $n$-cube $H_{n,k}$ is a core and also, that non-bipartite Taylor graphs are cores. Additionally, we give a necessary and sufficient condition for the existence of homomorphisms $H_{n,k}\to H_{n',k'}$ when $n/k = n'/k'$. Lastly, we show that if a 2-walk-regular graph (which is non-bipartite and not complete multipartite) has a unique optimal vector coloring, it is a core. Based on this sufficient condition we conducted a computational study on Ted Spence's list of strongly regular graphs and found that at least 84% are cores.

[1]  S. Stahl n-Tuple colorings and associated graphs , 1976 .

[2]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[3]  Jaroslav Nesetril,et al.  Homomorphisms of derivative graphs , 1971, Discret. Math..

[4]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[5]  Chris Godsil,et al.  Erdős-Ko-Rado Theorems: Algebraic Approaches , 2015 .

[6]  Peter Jonsson,et al.  An Approximability-related Parameter on Graphs - Properties and Applications , 2015, Discret. Math. Theor. Comput. Sci..

[7]  G. Hahn,et al.  Graph homomorphisms: structure and symmetry , 1997 .

[8]  Igor Pak,et al.  Constructing Uniquely Realizable Graphs , 2013, Discret. Comput. Geom..

[9]  Chris D. Godsil,et al.  Problems in Algebraic Combinatorics , 1995, Electron. J. Comb..

[10]  Chris D. Godsil,et al.  Colouring lines in projective space , 2006, J. Comb. Theory, Ser. A.

[11]  R. McEliece,et al.  The Lovasz bound and some generalizations , 1978 .

[12]  Jaroslav Neetil Homomorphisms of derivative graphs , 1971 .

[13]  Peter J. Cameron,et al.  CORES OF SYMMETRIC GRAPHS , 2008, Journal of the Australian Mathematical Society.

[14]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[15]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[16]  László Babai,et al.  Spectra of Cayley graphs , 1979, J. Comb. Theory B.

[17]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[18]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[19]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[20]  Robert Sámal,et al.  Cubical coloring - fractional covering by cuts and semidefinite programming , 2009, Discret. Math. Theor. Comput. Sci..

[21]  M. Laurent,et al.  Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property , 2013, 1301.6616.

[22]  David E. Roberson,et al.  Sabidussi versus Hedetniemi for three variations of the chromatic number , 2013, Comb..

[23]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[24]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[25]  David E. Roberson,et al.  Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings , 2015, Discrete & Computational Geometry.

[26]  David E. Roberson,et al.  Homomorphisms of Strongly Regular Graphs , 2016, Electron. Notes Discret. Math..

[27]  L. Lovász Spectra of graphs with transitive groups , 1975 .