Functional β-1,4-Galactan Synthases Running Title Identification of β-1,4-Galactan Synthases in Arabidopsis

[1]  H. Scheller,et al.  Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides , 2018, The Plant journal : for cell and molecular biology.

[2]  H. Scheller,et al.  Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass , 2018, Biotechnology for Biofuels.

[3]  H. Scheller,et al.  The elaborate route for UDP-arabinose delivery into the Golgi of plants , 2017, Proceedings of the National Academy of Sciences.

[4]  B. Henrissat,et al.  Complex pectin metabolism by gut bacteria reveals novel catalytic functions , 2017, Nature.

[5]  Maja G. Rydahl,et al.  Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-d-galactotetraose. , 2016, Carbohydrate research.

[6]  Maja G. Rydahl,et al.  Synthesis of β-1,4-Linked Galactan Side-Chains of Rhamnogalacturonan I. , 2016, Chemistry.

[7]  M. Pauly,et al.  The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development , 2016, Nature Communications.

[8]  M. Pauly,et al.  A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans , 2016, BMC Plant Biology.

[9]  Fan Yang,et al.  Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. , 2015, Plant biotechnology journal.

[10]  S. Braybrook,et al.  How to let go: pectin and plant cell adhesion , 2015, Frontiers in Plant Science.

[11]  K. Stott,et al.  An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14 , 2015, The Plant journal : for cell and molecular biology.

[12]  P. Adams,et al.  Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis[OPEN] , 2015, Plant Cell.

[13]  H. Scheller,et al.  A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis , 2014, BMC Plant Biology.

[14]  P. Lerouge,et al.  The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. , 2014, Annals of botany.

[15]  M. Pauly,et al.  The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[16]  M. Tyers,et al.  BoxPlotR: a web tool for generation of box plots , 2014, Nature Methods.

[17]  D. Mohnen,et al.  Evolving views of pectin biosynthesis. , 2013, Annual review of plant biology.

[18]  H. Scheller,et al.  Pectin Biosynthesis: GALS1 in Arabidopsis thaliana Is a β-1,4-Galactan β-1,4-Galactosyltransferase[C][W][OA] , 2012, Plant Cell.

[19]  Maja G. Rydahl,et al.  Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research* , 2012, The Journal of Biological Chemistry.

[20]  Antony Bacic,et al.  Determining the polysaccharide composition of plant cell walls , 2012, Nature Protocols.

[21]  B. Poinssot,et al.  Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. , 2012, Plant, cell & environment.

[22]  H. Scheller,et al.  Plant Glycosyltransferases Beyond CAZy: A Perspective on DUF Families , 2012, Front. Plant Sci..

[23]  Sophie Bernard,et al.  Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants , 2012, Front. Plant Sci..

[24]  Mark F. Davis,et al.  Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance , 2011 .

[25]  Andrej A. Arsovski,et al.  Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research , 2010, Plant signaling & behavior.

[26]  F. Guillon,et al.  Monoclonal antibodies to rhamnogalacturonan I backbone , 2010, Planta.

[27]  W. Willats,et al.  Simultaneous in vivo truncation of pectic side chains , 2009, Transgenic Research.

[28]  Steven W. Mast,et al.  Exploring the Ultrastructural Localization and Biosynthesis of β(1,4)-Galactan in Pinus radiata Compression Wood1 , 2009, Plant Physiology.

[29]  C. Olsen,et al.  Functional characterisation of a putative rhamnogalacturonan II specific xylosyltransferase , 2008, FEBS letters.

[30]  D. Mohnen Pectin structure and biosynthesis. , 2008, Current opinion in plant biology.

[31]  M. Pauly,et al.  Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in Arabidopsis[W][OA] , 2008, The Plant Cell Online.

[32]  Andreas Nebenführ,et al.  A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. , 2007, The Plant journal : for cell and molecular biology.

[33]  Antony Bacic,et al.  High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. , 2007, The Plant journal : for cell and molecular biology.

[34]  T. Konishi,et al.  Chain elongation of pectic β-(1→4)-galactan by a partially purified galactosyltransferase from soybean (Glycine max Merr.) hypocotyls , 2007, Planta.

[35]  F. Yamamoto,et al.  An Overview of the Biology of Reaction Wood Formation , 2007 .

[36]  Susanne Sørensen,et al.  Biosynthesis of pectin , 2006 .

[37]  C. Olsen,et al.  Arabidopsis thaliana RGXT1 and RGXT2 Encode Golgi-Localized (1,3)-α-d-Xylosyltransferases Involved in the Synthesis of Pectic Rhamnogalacturonan-II[W][OA] , 2006, The Plant Cell Online.

[38]  D. Bolam,et al.  Understanding the Biological Rationale for the Diversity of Cellulose-directed Carbohydrate-binding Modules in Prokaryotic Enzymes* , 2006, Journal of Biological Chemistry.

[39]  Debra Mohnen,et al.  Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Pauly,et al.  ARABINAN DEFICIENT 1 Is a Putative Arabinosyltransferase Involved in Biosynthesis of Pectic Arabinan in Arabidopsis1[W] , 2005, Plant Physiology.

[41]  Fabienne Guillon,et al.  Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of endosperm of wheat , 2004 .

[42]  M. Ohnishi-Kameyama,et al.  Identification of elongating β-1,4-galactosyltransferase activity in mung bean (Vigna radiata) hypocotyls using 2-aminobenzaminated 1,4-linked β-d-galactooligosaccharides as acceptor substrates , 2004, Planta.

[43]  F. Blamey A role for pectin in the control of cell expansion , 2003 .

[44]  W. Willats,et al.  Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. , 2003, Carbohydrate research.

[45]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[46]  F. Qu,et al.  Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. , 2002, Molecular plant-microbe interactions : MPMI.

[47]  J. Visser,et al.  Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides , 2001, Microbiology and Molecular Biology Reviews.

[48]  B. Ridley,et al.  Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. , 2001, Phytochemistry.

[49]  M. McCann,et al.  Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-D-galactanase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[51]  W. Willats,et al.  Generation of monoclonal antibody specific to (1-->5)-alpha-L-arabinan. , 1998, Carbohydrate research.

[52]  Seymour,et al.  Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan , 1997, Plant physiology.

[53]  N. Carpita,et al.  Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. , 1992, Plant physiology.

[54]  A. Geitmann,et al.  Relating the mechanics of the primary plant cell wall to morphogenesis. , 2016, Journal of experimental botany.

[55]  T. Gorshkova,et al.  Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. , 2012, Journal of experimental botany.

[56]  M. Arend Immunolocalization of (1,4)-beta-galactan in tension wood fibers of poplar. , 2008, Tree physiology.

[57]  T. Gorshkova,et al.  Secondary cell-wall assembly in flax phloem fibres: role of galactans , 2005, Planta.

[58]  J. A. Buso,et al.  BMC Plant Biology , 2003 .

[59]  F. Goubet,et al.  Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharides and polysaccharide hydrolases. , 2002, Analytical biochemistry.

[60]  P. Albersheim,et al.  Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. , 1968, The Biochemical journal.