Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes

[1]  G. Heusch,et al.  No sex-related differences in infarct size, no-reflow and protection by ischaemic preconditioning in Göttingen minipigs. , 2022, Cardiovascular research.

[2]  Tae Yun Kim,et al.  Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia , 2022, Circulation research.

[3]  D. Terentyev,et al.  MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca2+ release in hypertrophic rat cardiomyocytes. , 2021, American journal of physiology. Heart and circulatory physiology.

[4]  D. Terentyev,et al.  Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. , 2021, Journal of molecular and cellular cardiology.

[5]  B. Whitson,et al.  Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. , 2021, Journal of molecular and cellular cardiology.

[6]  B. O’Rourke,et al.  MCU Overexpression Rescues Inotropy and Reverses Heart Failure by Reducing SR Ca2+ Leak. , 2021, Circulation research.

[7]  D. Terentyev,et al.  Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk , 2021, JACC. Basic to translational science.

[8]  S. Inoue,et al.  Mechanisms Underlying the Regulation of Mitochondrial Respiratory Chain Complexes by Nuclear Steroid Receptors , 2020, International journal of molecular sciences.

[9]  J. Roh,et al.  Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer , 2020, Redox biology.

[10]  D. Terentyev,et al.  Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS , 2020, Basic Research in Cardiology.

[11]  S. Inoue,et al.  Functional Mechanisms of Mitochondrial Respiratory Chain Supercomplex Assembly Factors and Their Involvement in Muscle Quality , 2020, International journal of molecular sciences.

[12]  J. Gidday,et al.  Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Natalie M. Mishina,et al.  Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. , 2020, Cell metabolism.

[14]  Francesca N. Delling,et al.  Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association , 2020, Circulation.

[15]  M. Laasmaa,et al.  Respiration of permeabilized cardiomyocytes from mice: no sex differences, but substrate-dependent changes in the apparent ADP-affinity , 2019, Scientific Reports.

[16]  D. Terentyev,et al.  Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart , 2019, International journal of molecular sciences.

[17]  S. Sheu,et al.  SR-mitochondria communication in adult cardiomyocytes: A close relationship where the Ca2+ has a lot to say. , 2019, Archives of biochemistry and biophysics.

[18]  Tae Yun Kim,et al.  Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species , 2018, Front. Physiol..

[19]  D. Terentyev,et al.  Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity , 2018, Front. Physiol..

[20]  A. Zima,et al.  Oxidation of ryanodine receptor after ischemia-reperfusion increases propensity of Ca2+ waves during β-adrenergic receptor stimulation. , 2018, American journal of physiology. Heart and circulatory physiology.

[21]  Mohit M. Jain,et al.  Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function , 2018, The Journal of Biological Chemistry.

[22]  N. Peters,et al.  Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis of isolated cardiomyocyte studies , 2017, Cardiovascular research.

[23]  S. Reis,et al.  Sudden Cardiac Death in Women With Suspected Ischemic Heart Disease, Preserved Ejection Fraction, and No Obstructive Coronary Artery Disease: A Report From the Women's Ischemia Syndrome Evaluation Study , 2017, Journal of the American Heart Association.

[24]  C. Lemaire,et al.  Mitochondria: a central target for sex differences in pathologies. , 2017, Clinical science.

[25]  Saber H. Saber,et al.  Sex‐specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain , 2017, Physiological reports.

[26]  Tae Yun Kim,et al.  SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR , 2017, Cardiovascular research.

[27]  H. Colecraft,et al.  Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. , 2016, Heart rhythm.

[28]  C. Hoppel,et al.  Mitochondrial Metabolism in Aging Heart. , 2016, Circulation research.

[29]  Mark E. Anderson,et al.  Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart , 2015, Proceedings of the National Academy of Sciences.

[30]  S. Houser,et al.  The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. , 2015, Cell reports.

[31]  A. Karma,et al.  Hyperphosphorylation of RyRs Underlies Triggered Activity in Transgenic Rabbit Model of LQT2 Syndrome , 2014, Circulation research.

[32]  A. Wiederkehr,et al.  NCLX Protein, but Not LETM1, Mediates Mitochondrial Ca2+ Extrusion, Thereby Limiting Ca2+-induced NAD(P)H Production and Modulating Matrix Redox State* , 2014, The Journal of Biological Chemistry.

[33]  Egbert J Boekema,et al.  Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. , 2014, Biochimica et biophysica acta.

[34]  D. Terentyev,et al.  Redox modification of ryanodine receptors by mitochondria‐derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts , 2013, The Journal of physiology.

[35]  S. Lancel,et al.  Hydrogen Peroxide–Mediated SERCA Cysteine 674 Oxidation Contributes to Impaired Cardiac Myocyte Relaxation in Senescent Mouse Heart , 2013, Journal of the American Heart Association.

[36]  S. Priori,et al.  Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia , 2013, Proceedings of the National Academy of Sciences.

[37]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[38]  S. Howlett,et al.  Sex differences in mechanisms of cardiac excitation–contraction coupling , 2013, Pflügers Archiv - European Journal of Physiology.

[39]  A. Zima,et al.  Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during β‐adrenergic receptor stimulation in rabbit cardiomyocytes , 2012, The Journal of physiology.

[40]  G. Billman,et al.  Shortened Ca2+ Signaling Refractoriness Underlies Cellular Arrhythmogenesis in a Postinfarction Model of Sudden Cardiac Death , 2012, Circulation research.

[41]  Dmitry Terentyev,et al.  Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. , 2009, Cardiovascular research.

[42]  G. Heusch,et al.  Loss of cardioprotection with ageing. , 2009, Cardiovascular research.

[43]  Dmitry Terentyev,et al.  Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca2+ Leak in Chronic Heart Failure , 2008, Circulation research.

[44]  William Stanley,et al.  Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation , 2008, Cardiovascular research.

[45]  P. Roca,et al.  Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. , 2007, Cardiovascular research.

[46]  G. Heusch,et al.  Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. , 2006, Cardiovascular research.

[47]  S. Schaefer,et al.  Gender modulation of Ca(2+) uptake in cardiac mitochondria. , 2004, Journal of molecular and cellular cardiology.

[48]  K. Bidasee,et al.  Streptozotocin-Induced Diabetes Increases Disulfide Bond Formation on Cardiac Ryanodine Receptor (RyR2) , 2003, Journal of Pharmacology and Experimental Therapeutics.

[49]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[50]  C. Hayward,et al.  Gender-related differences in left ventricular chamber function. , 2001, Cardiovascular research.

[51]  S. Inoue,et al.  Isolation of Estrogen-Responsive Genes with a CpG Island Library , 1998, Molecular and Cellular Biology.

[52]  R. Coleman,et al.  Sex-related differences in the normal cardiac response to upright exercise. , 1984, Circulation.

[53]  E. J. Battersby,et al.  Effect of pressure development on oxygen consumption by isolated rat heart. , 1967, The American journal of physiology.