Recent advances in thermoelectrics

The thermoelectric field keeps going strong. Material figure of merit has been increased to values well above one, in nanostructured bulk thermoelectrics. To improve the materials' properties further, we need a clear understanding of charge and heat carrier transport. In parallel, we need to study the thermoelectric devices and strategies to minimize parasitic losses which can reduce the device efficiency and develop new applications for the thermoelectric power generators. In this paper we report the recent advances in the first principles based phonon transport calculations, strategies to enhance the material efficiencies and advances in the solar thermoelectric generators.

[1]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[2]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[3]  M. Dresselhaus,et al.  Thermal conductivity spectroscopy technique to measure phonon mean free paths. , 2011, Physical review letters.

[4]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[5]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[6]  Gang Chen,et al.  Enhanced thermoelectric figure of merit of p-type half-Heuslers. , 2011, Nano letters.

[7]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[8]  M. Kaviany,et al.  Filler-reduced phonon conductivity of thermoelectric skutterudites: Ab initio calculations and molecular dynamics simulations , 2010 .

[9]  Gang Chen,et al.  Enhancement in Thermoelectric Figure‐Of‐Merit of an N‐Type Half‐Heusler Compound by the Nanocomposite Approach , 2011 .

[10]  Nathan S. Lewis,et al.  Solar energy conversion. , 2007 .

[11]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[12]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[13]  M. Dresselhaus,et al.  Power factor enhancement by modulation doping in bulk nanocomposites. , 2011, Nano letters.

[14]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[15]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[16]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[17]  G. J. Snyder,et al.  High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb) , 2011 .

[18]  Nico de Koker,et al.  Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. , 2009 .

[19]  David G. Cahill,et al.  Frequency dependence of the thermal conductivity of semiconductor alloys , 2007 .

[20]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[21]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[22]  G. Mahan Chapter 3 - Thermionic Refrigeration , 2001 .

[23]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[24]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[25]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[26]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[27]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[28]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[29]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[30]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[31]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[32]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[33]  Ronggui Yang,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. , 2010, Nature materials.

[34]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[35]  Heinrich Daembkes,et al.  Modulation-doped field-effect transistors : principles, design, and technology , 1991 .

[36]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[37]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .