Temporal processing in the basal ganglia.

This study investigated the role of the basal ganglia in timing operations. Nondemented, medicated Parkinson's disease (PD) patients and controls were tested on 2 motor-timing tasks (paced finger tapping at a 300- or 600-ms target interval), 2 time perception tasks (duration perception wherein the interval between the standard tone pair was 300 or 600 ms), and 2 tasks that controlled for the auditory processing (frequency perception) demands of the time perception task and the movement rate (rapid tapping) in the motor-timing task. Using A.M. Wing and A.B. Kristofferson's (1973) model, the total variability in motor timing was partitioned into a clock component, which reflects central timekeeping operations, and a motor delay component, which estimates random variability due to response implementation processes. The PD group was impaired at both target intervals of the time perception and motor-timing tasks. Impaired motor timing was due to elevated clock but not motor delay variability. The findings implicate the basal ganglia and its thalamocortical connections in timing operations.