Constraints on the box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data

Precise measurements of spectra of cosmic ray electrons and positrons can effectively probe the nature of dark matter (DM) particles. In a class of models where DM particles initially annihilate into a pair of intermediate particles which then decay into standard model particles, box-shaped spectra can be generated. Such spectra are distinct from astrophysical backgrounds and can probably be regarded as characteristic features of the DM annihilation. In this work, we search for such a feature in the total electron plus positron spectrum measured by AMS-02 and DAMPE. No significant evidence for such a DM annihilation component has been found. The 95% confidence level upper limits of the velocity-weighted annihilation cross section are derived, which range from similar to 10(-26) cm(3) s(-1) for DM mass of 50 GeV to similar to 10(-23) cm(3) s(-1) for DM mass of 10 TeV.

[1]  Q. Yuan,et al.  Study of the boxlike dark matter signals from dwarf spheroidal galaxies with Fermi-LAT data , 2018 .

[2]  Yu-feng Zhou,et al.  Origins of sharp cosmic-ray electron structures and the DAMPE excess , 2017, 1712.00005.

[3]  G. Donvito,et al.  The DArk Matter Particle Explorer mission , 2017, 1706.08453.

[4]  Bing-Bing Wang,et al.  Perspective on the Cosmic-ray Electron Spectrum above TeV , 2016, 1611.10292.

[5]  Yu-feng Zhou,et al.  Antiprotons from dark matter annihilation through light mediators and a possible excess in AMS-02 p/p data , 2016, 1611.01983.

[6]  Y. S. Tsai,et al.  Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data. , 2016, Physical review letters.

[7]  M. Krämer,et al.  Novel Dark Matter Constraints from Antiprotons in Light of AMS-02. , 2016, Physical review letters.

[8]  R. Sagdeev,et al.  Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. , 2016, Physical review letters.

[9]  M. White,et al.  Gamma rays from muons from WIMPs : Implementation of radiative muon decays for dark matter analyses , 2016, 1604.00744.

[10]  Qiang Yuan,et al.  LikeDM: Likelihood calculator of dark matter detection , 2016, Comput. Phys. Commun..

[11]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[12]  T. Slatyer,et al.  Multistep cascade annihilations of dark matter and the Galactic Center excess , 2015, 1503.01773.

[13]  C. Savage,et al.  Fermi/LAT observations of dwarf galaxies highly constrain a dark matter interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA , 2015, 1501.01618.

[14]  T. Dong,et al.  ‘Excess’ of primary cosmic ray electrons , 2014, 1412.1550.

[15]  Chang Jin,et al.  Dark Matter Particle Explorer:The First Chinese Cosmic Ray and Hard γ-ray Detector in Space , 2014 .

[16]  Q. Yuan,et al.  Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties , 2014, 1409.6248.

[17]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[18]  M. D. Mauro,et al.  Interpretation of AMS-02 electrons and positrons data , 2014, 1402.0321.

[19]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[20]  J. Silk,et al.  Dark matter annihilations and decays after the AMS-02 positron measurements , 2013, 1309.2570.

[21]  M. Kadastik,et al.  Addendum including AMS 2013 data to “Model-independent implications of the e±, p¯ cosmic ray spectra on properties of Dark Matter” [Nucl. Phys. B 813 (1–2) (2009) 1–21] , 2013 .

[22]  D. Hooper,et al.  New limits on dark matter annihilation from Alpha Magnetic Spectrometer cosmic ray positron data. , 2013, Physical Review Letters.

[23]  Q. Yuan,et al.  Pulsar interpretation for the AMS-02 result , 2013, 1304.4128.

[24]  Q. Yuan,et al.  Reconcile the AMS-02 positron fraction and Fermi-LAT/HESS total e(+/-) spectra by the primary electron spectrum hardening , 2013, 1304.2687.

[25]  Yu-feng Zhou,et al.  Implications of the first AMS-02 measurement for dark matter annihilation and decay , 2013, 1304.1997.

[26]  D. Hooper,et al.  Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.

[27]  S. Profumo,et al.  PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES , 2013, 1304.1791.

[28]  Guo-ming Chen,et al.  Implications of the AMS-02 positron fraction in cosmic rays , 2013, 1304.1482.

[29]  J. Kopp Constraints on dark matter annihilation from AMS-02 results , 2013, 1304.1184.

[30]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[31]  T. Dong,et al.  AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening ✩ , 2013, 1303.0530.

[32]  J. Chiang,et al.  FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM , 2012 .

[33]  A. Ibarra,et al.  Dark matter constraints from box-shaped gamma-ray features , 2012, 1205.0007.

[34]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[35]  T Glanzman,et al.  Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.

[36]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[37]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[38]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[39]  A. V. Karelin,et al.  PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. , 2010, Physical review letters.

[40]  A. Strumia,et al.  Robust implications on dark matter from the first FERMI sky γ map , 2009, 0912.0742.

[41]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[42]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[43]  P. Blasi Origin of the positron excess in cosmic rays. , 2009, Physical review letters.

[44]  D. Malyshev,et al.  Pulsars versus dark matter interpretation of ATIC/PAMELA , 2009, 0903.1310.

[45]  Jesse Thaler,et al.  Dark matter signals from cascade annihilations , 2009, 0901.2926.

[46]  Chinese Academy of Sciences,et al.  ON THE e+e− EXCESSES AND THE KNEE OF THE COSMIC RAY SPECTRA—HINTS OF COSMIC RAY ACCELERATION IN YOUNG SUPERNOVA REMNANTS , 2009, 0901.1520.

[47]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[48]  G. Bertone,et al.  Gamma-ray and Radio Constraints of High Positron Rate Dark Matter Models Annihilating into New Light Particles , 2008, 0812.3895.

[49]  Astronomy,et al.  Discriminating different scenarios to account for the cosmic e ± excess by synchrotron and inverse Compton radiation , 2008, 0812.0522.

[50]  G. Bertone,et al.  Gamma-ray and radio tests of the e? excess from DM annihilations , 2008, 0811.3744.

[51]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[52]  Q. Yuan,et al.  PAMELA data and leptonically decaying dark matter , 2008, 0811.0176.

[53]  M Nagni,et al.  New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. , 2008, Physical review letters.

[54]  T. Stanev,et al.  TeV gamma rays from Geminga and the origin of the GeV positron excess. , 2008, Physical review letters.

[55]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[56]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[57]  Mario Kadastik,et al.  Model-independent implications of the e , p cosmic ray spectra on properties of Dark Matter , 2008, 0809.2409.

[58]  W. Keung,et al.  PAMELA and dark matter , 2008, 0809.0162.

[59]  T. Bringmann,et al.  New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data? , 2008, 0808.3725.

[60]  L. Maccione,et al.  Erratum: Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model , 2008, Journal of Cosmology and Astroparticle Physics.

[61]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[62]  C. Winant,et al.  First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.

[63]  T. Koi,et al.  Parameterization of γ, epm, and Neutrino Spectra Produced by p-p Interaction in Astronomical Environments , 2006, astro-ph/0605581.

[64]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[65]  Jonathan L. Feng,et al.  Prospects for indirect detection of neutralino dark matter , 2000, astro-ph/0008115.

[66]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[67]  A. Strong,et al.  Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.

[68]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[69]  C. Shen Pulsars and very high-energy cosmic-ray electrons , 1970 .

[70]  Jonathan L. Feng,et al.  Precision Measurement of the $\left({e}^{+}+{e}^{-}\right)$ Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .

[71]  Gianfranco Bertone,et al.  Particle Dark Matter: List of contributors , 2010 .

[72]  G. Bertone Particle Dark Matter: List of contributors , 2010 .