PARAFAC. Tutorial and applications

[1]  Rasmus Bro,et al.  Prediction of Polyphenol Oxidase Activity in Model Solutions Containing Various Combinations of Chlorogenic Acid, (−)-Epicatechin, O2, CO2, Temperature, and pH by Multiway Data Analysis , 1997 .

[2]  Rasmus Bro,et al.  Enzymatic browning of vegetables. Calibration and analysis of variance by multiway methods , 1996 .

[3]  L. Nørgaard A multivariate chemometric approach to fluorescence spectroscopy. , 1995, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[4]  John R. Whitaker,et al.  The biochemistry and control of enzymatic browning , 1995 .

[5]  D. Burdick An introduction to tensor products with applications to multiway data analysis , 1995 .

[6]  Age K. Smilde,et al.  Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-Based Chemical Sensor. 3. Medium-Rank Second-Order Calibration with Restricted Tucker Models , 1994 .

[7]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[8]  Gerrit Kateman,et al.  Generalized rank annihilation method. I: Derivation of eigenvalue problems , 1994 .

[9]  Ben C. Mitchell,et al.  Slowly converging parafac sequences: Swamps and two‐factor degeneracies , 1994 .

[10]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[11]  Ben C. Mitchell,et al.  An empirical comparison of resolution methods for three-way arrays , 1993 .

[12]  M. C. Ortiz,et al.  A program for non-orthogonal rotation in factor analysis , 1993 .

[13]  H. Kiers An alternating least squares algorithms for PARAFAC2 and three-way DEDICOM , 1993 .

[14]  B. Kowalski,et al.  The parsimony principle applied to multivariate calibration , 1993 .

[15]  Paul J. Gemperline,et al.  Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method , 1993 .

[16]  Mikael Kubista,et al.  Analysis of Correlated Spectral Data , 1993 .

[17]  S. Leurgans,et al.  Multilinear Models: Applications in Spectroscopy , 1992 .

[18]  Age K. Smilde,et al.  Three-way analyses problems and prospects , 1992 .

[19]  J. Berge,et al.  Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .

[20]  H. Späth Mathematical algorithms for linear regression , 1991 .

[21]  Henk A. L. Kiers,et al.  Hierarchical relations among three-way methods , 1991 .

[22]  Henk A. L. Kiers,et al.  An efficient algorithm for PARAFAC of three-way data with large numbers of observation units , 1991 .

[23]  R. T. Ross,et al.  Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. , 1990, Archives of biochemistry and biophysics.

[24]  Linda B. McGown,et al.  Resolution of multicomponent fluorescent mixtures by analysis of the excitation–emission–frequency array , 1990 .

[25]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[26]  Paul Geladi,et al.  Analysis of multi-way (multi-mode) data , 1989 .

[27]  Jos M. F. ten Berge,et al.  Convergence of ParaFac preprocessing procedures and the Deming-Stephan method of iterative proportional fitting , 1989 .

[28]  J. Kruskal,et al.  How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .

[29]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[30]  J. Leeuw,et al.  Explicit candecomp/parafac solutions for a contrived 2 × 2 × 2 array of rank three , 1988 .

[31]  J. Barlow Error Analysis and Implementation Aspects of Deferred Correction for Equality Constrained Least Squares Problems , 1988 .

[32]  N. Nichols,et al.  Iterative Methods for Equality-Constrained Least Squares Problems , 1988 .

[33]  H. Martens,et al.  ANOVA Interactions Interpreted by Partial Least Squares Regression , 1986 .

[34]  Richard J. Hanson,et al.  Linear least squares with bounds and liner constraints , 1986 .

[35]  B. Everitt,et al.  Three-Mode Principal Component Analysis. , 1986 .

[36]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[37]  D. Eichorn Present and Past in Middle Life , 1982 .

[38]  Forrest W. Young,et al.  Component models for three-way data: An alternating least squares algorithm with optimal scaling features , 1980 .

[39]  J. Kruskal,et al.  Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .

[40]  J. Kruskal More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling , 1976 .

[41]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[42]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[43]  N. Cliff Orthogonal rotation to congruence , 1966 .

[44]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[45]  R. Bro Multiway calibration. Multilinear PLS , 1996 .

[46]  Lars Nørgaard,et al.  Classification and prediction of quality and process parameters of thick juice and beet sugar by fluorescence spectroscopy and chemometrics , 1995 .

[47]  Sue Leurgans,et al.  [27] Component resolution using multilinear models , 1995 .

[48]  B. Kowalski,et al.  Theory of medium‐rank second‐order calibration with restricted‐Tucker models , 1994 .

[49]  Wilhelmus Petrus Krijnen,et al.  The analysis of three-way arrays by constrained parafac methods , 1993 .

[50]  A. Smilde,et al.  Simple validatory tools for judging the predictive performance of parafac and three‐way PLS , 1992 .

[51]  Magni Martens,et al.  Partial least-squares regression on design variables as an alternative to analysis of variance , 1986 .

[52]  H. Law Research methods for multimode data analysis , 1984 .

[53]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[54]  Richard A. Harshman,et al.  Appendix A – Basic Concepts Underlying the PARAFAC-CANDECOMP Three-Way Factor Analysis Model and Its Application to Longitudinal Data1,2 , 1981 .

[55]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[56]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[57]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[58]  G. Ewing Instrumental methods of chemical analysis , 1954 .