Evaluation of Spliced Open-end Yarn Performances Using Fuzzy Method

This work explored a prediction of spliced open-end spun-yarn appearance, strength, and twist using the fuzzy method. To determine the most relevant input variables, affecting the spliced open-end spun yarns, and output properties, defining the splice performance, a principal component analysis was used. Therefore, the selected parameters (recalling yarn code, duration of tearing, and delivered quantity of fibers code) were used to predict the splice performance using the fuzzy logic technique. Compared with the experimental method, the fuzzy technique gives more accurate results that help in the splice properties prediction as function of selected input parameters.

[1]  Xiubao Huang,et al.  Modeling the twist level at the peeling point in rotor spinning , 2003 .

[2]  Earl D. Cox,et al.  Fuzzy Logic for Business and Industry , 1995 .

[3]  Chung-Feng Jeffrey Kuo,et al.  Optimization of Open-end Rotor Spinning Frame Parameter and Estimation of Relevant Quality Characteristics , 2011 .

[4]  Faouzi Sakli,et al.  Mechanical properties and appearance of wet-spliced cotton/elastane yarns , 2008 .

[5]  R.-H. Yang,et al.  Effects of spinning conditions on convergent point in rotor-spun composite-yarn spinning process , 2009 .

[6]  Abhijit Majumdar,et al.  Application of an adaptive neuro-fuzzy system for the prediction of cotton yarn strength from HVI fibre properties , 2005 .

[7]  T. Lo,et al.  A Mechanical Model of Yarn Twist Blockage in Rotor Spinning , 2000 .

[8]  R. Ogulata,et al.  Taguchi Approach for the Optimisation of the Bursting Strength of Knitted Fabrics , 2010 .

[9]  M. Ethridge,et al.  A Method for Estimating the Spinning-potential Yarn Number for Cotton Spun on the Rotor-spinning System , 1998 .

[10]  Shanyuan Wang,et al.  Comparison and Analysis of Rotor-Spun Composite Yarn and Sirofil Yarn , 2010 .

[11]  S. M. Ishtiaque,et al.  Analysis of spinning process using the Taguchi method. Part II: Effect of spinning process variables on fibre extent and fibre overlap in ring, rotor and air-jet yarns , 2006 .

[12]  S. M. Ishtiaque,et al.  Influence of process parameters on properties of open-end and core-sheath friction spun acrylic yarns , 2007 .

[13]  P. K. Hari,et al.  Mechanism of the Splice , 1988 .

[14]  K.P.S. Cheng,et al.  Strength of Pneumatic Spliced Polyester/Cotton Ring Spun Yarns , 2000 .

[15]  E. Peterson,et al.  The Formation and Structure of Fancy Yarns Produced by a Pressurized-air Method , 1997 .

[16]  K.P.S. Cheng,et al.  Physical Properties of Pneumatically Spliced Cotton Ring Spun Yarns , 2000 .

[17]  Xungai Wang,et al.  MEASURING THE HAIRINESS OF A ROTOR-SPUN YARN ON THE USTER TESTER 3 AT DIFFERENT SPEEDS , 1998 .

[18]  Faouzi Sakli,et al.  Evaluation of wet pneumatically spliced elastic denim yarns with fuzzy theory , 2010 .

[19]  M. Cheikhrouhou,et al.  Mechanical Modeling of Tenacity: Application for the Ring and Open-End Plied Yarns , 2008 .

[20]  Chung-Feng Jeffrey Kuo,et al.  Using Fuzzy Theory to Predict the Properties of a Melt Spinning System , 2004 .