Singularities of Some Projective Rational Surfaces

We discuss the singularities of some rational algebraic surfaces in complex projective space. In particular, we give formulas for the degrees of the various types of singular loci, in terms of invariants of the surface. These enumerative results can be used, on the one hand, to show the existence of singularities in the complex case, and, on the other hand, as an “upper bound” for the singularities that can occur on a real rational surface.

[1]  Vladimir I. Arnold,et al.  Singularity Theory I , 1998 .

[2]  François Apéry,et al.  Models of the Real Projective Plane , 1987 .

[3]  Ragni Piene,et al.  Some formulas for a surface in ℙ3 , 1978 .

[4]  Schlafli On the Distribution of Surfaces of the Third Order into Species, in Reference to the Absence or Presence of Singular Points, and the Reality of Their Lines , 1863 .

[5]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[6]  J. Rafael Sendra,et al.  Parametrization of approximate algebraic surfaces by lines , 2005, Comput. Aided Geom. Des..

[7]  François Apéry,et al.  Models of the real projective plane - computer graphics of Steiner and Boy surfaces , 1987 .

[8]  Corrado Segre Etude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions , 1884 .

[9]  Adam Coffman,et al.  The algebra and geometry of Steiner and other quadratically parametrizable surfaces , 1996, Comput. Aided Geom. Des..

[10]  F. Klein Ueber Flächen dritter Ordnung , 1873 .

[11]  C. Wall,et al.  On the Classification of Cubic Surfaces , 1979 .

[12]  R. Piene,et al.  Duality for rational normal scrolls , 1984 .

[13]  S. Lang Introduction to Algebraic Geometry , 1972 .

[14]  Thomas W. Sederberg,et al.  Approximate Implicitization Using Monoid Curves and Surfaces , 1999, Graph. Model. Image Process..

[15]  The non-singular cubic surfaces : a new method of investigation with special reference to questions of reality , 1942 .

[16]  Josef Schicho Elementary Theory of Del Pezzo Surfaces , 2005 .

[17]  R. Piene A NOTE ON HIGHER ORDER DUAL VARIETIES, WITH AN APPLICATION TO SCROLLS , 1982 .