Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation

An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.

[1]  T. Hirono,et al.  Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation , 1998 .

[2]  Jan Chomicki,et al.  Time Domain , 2018, Encyclopedia of Database Systems.

[3]  M. Sofroniou,et al.  Sympletic Runge--Kutta Shemes I: Order Conditions , 1997 .

[4]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[5]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[6]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[7]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[8]  Stavros V. Georgakopoulos,et al.  Higher-Order Finite-Difference Schemes for Electromagnetic Radiation , Scattering , and Penetration , Part I : Theory , 2004 .

[9]  沙威,et al.  Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method , 2006 .

[10]  Jian-Ming Jin,et al.  Three-dimensional orthogonal vector basis functions for time-domain finite element solution of vector wave equations , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[11]  Hongyu Liu,et al.  Multi-symplectic Runge–Kutta-type methods for Hamiltonian wave equations , 2006 .

[12]  Allen Taflove,et al.  A Novel Method to Analyze Electromagnetic Scattering of Complex Objects , 1982, IEEE Transactions on Electromagnetic Compatibility.

[13]  Wu Xian-liang,et al.  A second order symplectic partitioned Runge-Kutta scheme for Maxwell's equations , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[14]  C. Balanis,et al.  Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration .2. Applications , 2002 .

[15]  Loula Fezoui,et al.  A Nondiffusive Finite Volume Scheme for the Three-Dimensional Maxwell's Equations on Unstructured Meshes , 2002, SIAM J. Numer. Anal..

[16]  Yoshio Suzuki,et al.  The symplectic finite difference time domain method , 2001 .

[17]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[18]  Allen Taflove,et al.  Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , 1980, IEEE Transactions on Electromagnetic Compatibility.

[19]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[20]  Jeffrey L. Young,et al.  Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach , 1997 .

[21]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[22]  Yuzo Yoshikuni,et al.  A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator , 2001 .

[23]  V. Shankar,et al.  A Time-Domain, Finite-Volume Treatment for the Maxwell Equations , 1990 .

[24]  Amir Yefet,et al.  A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations , 2001 .

[25]  N. Anderson,et al.  Helicity and variational principles for Maxwell's equations , 1983 .

[26]  L. Jay Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .

[27]  Claus-Dieter Munz,et al.  A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes , 2000 .

[28]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[29]  Shan Zhao,et al.  High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces , 2004 .

[30]  S. Piperno,et al.  TIME-DOMAIN PARALLEL SIMULATION OF HETEROGENEOUS WAVE PROPAGATION ON UNSTRUCTURED GRIDS USING EXPLICIT, NONDIFFUSIVE, DISCONTINUOUS GALERKIN METHODS , 2006 .

[31]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[32]  Wei Cai,et al.  Discontinuous galerkin time-domain method for GPR simulation in dispersive media , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[34]  Chen Mingsheng,et al.  Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method , 2006 .

[35]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[36]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[37]  M. Kusaf,et al.  Optimized exponential operator coefficients for symplectic FDTD method , 2005, IEEE Microwave and Wireless Components Letters.

[38]  T. Hirono,et al.  Time-domain simulation of electromagnetic field using a symplectic integrator , 1997 .

[39]  Davld B. Davldson Higher-Order Finite-Difference Schemes for Electromagnetic Radiation, Scattering, and Penetration, Part 2: Applications , 2002 .

[40]  Yongzhong Song,et al.  On multi-symplectic partitioned Runge-Kutta methods for Hamiltonian wave equations , 2006, Appl. Math. Comput..

[41]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[42]  W. Oevel,et al.  Symplectic Runge-kutta Schemes I: Order Conditions , 1997 .

[43]  Bo Zhang,et al.  An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations , 2002 .

[44]  S. Seki,et al.  Successful applications of PML-ABC to the symplectic FDTD scheme with 4th-order accuracy in time and space , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[45]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[46]  M. Krumpholz,et al.  MRTD: new time-domain schemes based on multiresolution analysis , 1996 .

[47]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[48]  Ping Yang,et al.  Application of the symplectic finite-difference time-domain method to light scattering by small particles. , 2005, Applied optics.