Precipitation strengthening of nano-scale TiC in a duplex low-density steel under near-rapid solidification

[1]  Q. Zhai,et al.  Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels , 2020, Materials & Design.

[2]  Jiajian Li,et al.  Influence of Annealing Temperature on Microstructure and Three-Stage Strain Hardening Behavior in Cold-Rolled Fe-Mn-Al-C Steel , 2019, JOM.

[3]  Q. Zhai,et al.  Structures and properties of Fe-(8-16)Mn-9Al-0.8C low density steel made by a centrifugal casting in near-rapid solidification , 2019, Materials Science and Engineering: A.

[4]  C. H. Lee,et al.  Partitioning of C into κ-carbides by Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels , 2019, Journal of Alloys and Compounds.

[5]  Xiang Wang,et al.  Design of a low density Fe-Mn-Al-C steel with high strength-high ductility combination involving TRIP effect and dynamic carbon partitioning , 2019, Materials Science and Engineering: A.

[6]  Chang-jiang Song,et al.  Microstructure and mechanical behavior of a low-density Fe–12Mn–9Al–1.2C steel prepared using centrifugal casting under near-rapid solidification , 2018, Journal of Iron and Steel Research International.

[7]  Yinghui Wei,et al.  An Overview of the Effects of Alloying Elements on the Properties of Lightweight Fe-(15–35) Mn-(5–12) Al-(0.3–1.2) C Steel , 2018 .

[8]  C. Liu,et al.  A Review on Nano-Scale Precipitation in Steels , 2018 .

[9]  H. Ding,et al.  Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel , 2018 .

[10]  M. Herbig,et al.  Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel , 2017 .

[11]  A. Haldar,et al.  Current state of Fe-Mn-Al-C low density steels , 2017 .

[12]  J. Seol,et al.  Core-shell nanoparticle arrays double the strength of steel , 2017, Scientific Reports.

[13]  William A. Curtin,et al.  Solute strengthening in random alloys , 2017 .

[14]  C. Haase,et al.  On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel , 2017 .

[15]  R. Dronskowski,et al.  κ‐Phase Formation in Fe–Mn–Al–C Austenitic Steels , 2015 .

[16]  R. Song,et al.  Work hardening behavior involving the substructural evolution of an austenite–ferrite Fe–Mn–Al–C steel , 2015 .

[17]  X. An,et al.  Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content , 2015 .

[18]  S. Das,et al.  Development of TiC reinforced austenitic manganese steel , 2014 .

[19]  R. Rana High Modulus Steels , 2014 .

[20]  Jenn‐Ming Yang,et al.  Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy , 2014 .

[21]  G. Miyamoto,et al.  Tensile Behavior of Ti,Mo-added Low Carbon Steels with Interphase Precipitation , 2014 .

[22]  Kyung-Tae Park,et al.  Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature , 2013 .

[23]  C. G. Park,et al.  Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C allo , 2013 .

[24]  S. Cazottes,et al.  Ferrite Effects in Fe-Mn-Al-C Triplex Steels , 2013, Metallurgical and Materials Transactions A.

[25]  J. Takahashi,et al.  Experimental evaluation of the particle size dependence of the dislocation–particle interaction force in TiC-precipitation-strengthened steel , 2012 .

[26]  K. Das,et al.  In Situ Synthesis, Microstructure, and Properties of TiC and (Ti,W)C-Reinforced Fe-Mn-Al Austenitic Steel Matrix Composites , 2012, Journal of Materials Engineering and Performance.

[27]  A. Lekatou,et al.  Solidification observations of vacuum arc melting processed Fe–Al–TiC composites: TiC precipitation mechanisms , 2011 .

[28]  Po-Yu Chen,et al.  Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel , 2011 .

[29]  C. Curfs,et al.  Precipitation strengthening in high manganese austenitic TWIP steels , 2011 .

[30]  S. K. Kim,et al.  Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel , 2010 .

[31]  Bin Li,et al.  Microstructure and mechanical behaviors of in situ TiC particulates reinforced Ni matrix composites , 2010 .

[32]  K. Ishida,et al.  High-strength Fe–20Mn–Al–C-based Alloys with Low Density , 2010 .

[33]  T. Y. Wang,et al.  Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel , 2010 .

[34]  J. Yang,et al.  Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel , 2009 .

[35]  D. Ponge,et al.  Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility , 2009 .

[36]  Ying Yang,et al.  PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation , 2009 .

[37]  K. E. Easterling,et al.  Phase Transformations in Metals and Alloys (Revised Reprint) , 2009 .

[38]  A. S. Rao,et al.  Effect of Ti, W, Mn, Mo and Si on microstructure and mechanical properties of high carbon Fe–10·5 wt-%Al alloy , 2007 .

[39]  Georg Frommeyer,et al.  Microstructures and Mechanical Properties of High‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels , 2006 .

[40]  D. Raabe,et al.  Phase equilibria among α-Fe(Al,Cr,Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys , 2005 .

[41]  K. Tsuzaki,et al.  High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel , 2004 .

[42]  Hua-ming Wang,et al.  Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating , 2003 .

[43]  M. Enomoto,et al.  Discrete lattice plane analysis of Baker-Nutting related B1 compound/ferrite interfacial energy , 2002 .

[44]  Sunghak Lee,et al.  Effect of flux addition on the microstructure and hardness of TiC-reinforced ferrous surface composite layers fabricated by high-energy electron beam irradiation , 1999 .

[45]  Swapan Das,et al.  EFFECT OF NICKEL ON SINTERING OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS PRODUCED TITANIUM CARBIDE , 1999 .

[46]  H. Fredriksson,et al.  On the precipitation of TiC in liquid iron by reactions between different phases , 1997 .

[47]  A. Kirkbride,et al.  Processing and properties of FeMnAl alloys , 1986 .

[48]  R. Labusch,et al.  Statistische theorien der mischkristallhärtung , 1972 .