Circle graph obstructions under pivoting

A circle graph is the intersection graph of a set of chords of a circle. The class of circle graphs is closed under pivotminors. We determine the pivot-minor-minimal non-circle-graphs; there 15 obstructions. These obstructions are found, by computer search, as a corollary to Bouchet’s characterization of circle graphs under local complementation. Our characterization generalizes Kuratowski’s Theorem.

[1]  Hubert de Fraysseix,et al.  A Characterization of Circle Graphs , 1984, Eur. J. Comb..

[2]  James G. Oxley,et al.  Matroid theory , 1992 .

[3]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[4]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[5]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[6]  André Bouchet,et al.  Representability of △-matroids over GF(2) , 1991 .

[7]  André Bouchet,et al.  Unimodularity and circle graphs , 1987, Discret. Math..

[8]  W. T. Tutte Matroids and graphs , 1959 .

[9]  André Bouchet,et al.  Greedy algorithm and symmetric matroids , 1987, Math. Program..

[10]  B. Mohar,et al.  Graph Minors , 2009 .

[11]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.