Overview of the EVALITA 2018 Aspect-based Sentiment Analysis Task (ABSITA)

English. ABSITA is the Aspect-based Sentiment Analysis task at EVALITA 2018 (Caselli et al., 2018). This task aimed to foster research in the field of aspect-based sentiment analysis within the Italian language: the goal is to identify the aspects of given target entities and the sentiment expressed for each aspect. Two subtasks are defined, namely Aspect Category Detection (ACD) and Aspect Category Polarity (ACP). In total, 20 runs were submitted by 7 teams comprising 11 total individual participants. The best system achieved a micro F1-score of 0.810 for ACD and 0.767 for ACP. Italiano. ABSITA è l’esercizio di valutazione di aspect-based sentiment analysis di EVALITA 2018 (Caselli et al., 2018). Il compito ha l’obiettivo di promuovere la ricerca nel campo della sentiment analysis per lingua italiana: ai partecipanti è stato richiesto di identificare gli aspetti rilevanti per le entitá fornite come input e la sentiment espressa per ognuno di essi. In particolare abbiamo definito come sottotask l’Aspect Category Detection (ACD) e l’Aspect Category Polarity (ACP). In totale, sono state presentate 20 soluzioni di 7 team composti in totale da 11 singoli partecipanti. Il miglior sistema ha ottenuto un punteggio di micro F1 di 0,810 per ACD e 0,767 per ACP.

[1]  Silvia Bernardini,et al.  The WaCky wide web: a collection of very large linguistically processed web-crawled corpora , 2009, Lang. Resour. Evaluation.

[2]  Suresh Manandhar,et al.  SemEval-2015 Task 12: Aspect Based Sentiment Analysis , 2015, *SEMEVAL.

[3]  Emanuele Di Rosa,et al.  Aspect-based Sentiment Analysis: X2Check at ABSITA 2018 , 2018, EVALITA@CLiC-it.

[4]  Rodolfo Delmonte ItVENSES - A Symbolic System for Aspect-Based Sentiment Analysis , 2018, EVALITA@CLiC-it.

[5]  Anna Lisa Gentile,et al.  Overview of the EVALITA 2016 Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) Task , 2016, CLiC-it/EVALITA.

[6]  Giancarlo Nicola,et al.  Bidirectional Attentional LSTM for Aspect Based Sentiment Analysis on Italian , 2018, EVALITA@CLiC-it.

[7]  Felice Dell'Orletta,et al.  Multi-task Learning in Deep Neural Networks at EVALITA 2018 , 2018, EVALITA@CLiC-it.

[8]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[9]  Pasi Fränti,et al.  Web Data Mining , 2009, Encyclopedia of Database Systems.

[10]  Mauro Bennici,et al.  Ensemble of LSTMs for EVALITA 2018 Aspect-based Sentiment Analysis Task (ABSITA) (Short Paper) , 2018, EVALITA@CLiC-it.

[11]  Malvina Nissim,et al.  Overview of the Evalita 2016 SENTIment POLarity Classification Task , 2014, CLiC-it/EVALITA.

[12]  Tommaso Caselli,et al.  Evalita 2018: Overview on the 6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian , 2018, EVALITA@CLiC-it.

[13]  Suresh Manandhar,et al.  SemEval-2014 Task 4: Aspect Based Sentiment Analysis , 2014, *SEMEVAL.