Superconvergence of Immersed Finite Volume Methods for One-Dimensional Interface Problems
暂无分享,去创建一个
Waixiang Cao | Zhimin Zhang | Xu Zhang | Qingsong Zou | Zhimin Zhang | Waixiang Cao | Xu Zhang | Q. Zou
[1] Vidar Thomée,et al. High order local approximations to derivatives in the finite element method , 1977 .
[2] Jinchao Xu,et al. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.
[3] Tao Lin,et al. Nonconforming immersed finite element spaces for elliptic interface problems , 2018, Comput. Math. Appl..
[4] Zhang Zhimin,et al. Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations , 2013, 1311.6938.
[5] Waixiang Cao,et al. Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations , 2013, J. Sci. Comput..
[6] Ludmil T. Zikatanov,et al. Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.
[7] Tao Lin,et al. A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods , 2015, J. Sci. Comput..
[8] Tao Lin,et al. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..
[9] Endre Süli. Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .
[10] Michael Plexousakis,et al. On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..
[11] Xiaoming He,et al. Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient , 2010, J. Syst. Sci. Complex..
[12] Zhilin Li,et al. The immersed finite volume element methods for the elliptic interface problems , 1999 .
[13] Wei Guo,et al. Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach , 2013, J. Comput. Phys..
[14] Xu Zhang,et al. Discontinuous Galerkin immersed finite element methods for parabolic interface problems , 2015, J. Comput. Appl. Math..
[15] Chi-Wang Shu,et al. Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations , 2012, SIAM J. Numer. Anal..
[16] Zhimin Zhang,et al. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D , 2010, Math. Comput..
[17] Slimane Adjerid,et al. A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .
[18] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[19] C. Ollivier-Gooch,et al. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .
[20] Waixiang Cao,et al. Superconvergence of Discontinuous Galerkin Methods for Two-Dimensional Hyperbolic Equations , 2015, SIAM J. Numer. Anal..
[21] Zhimin Zhang,et al. Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems , 2015, Numerische Mathematik.
[22] J. Zou,et al. Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .
[23] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[24] Waixiang Cao,et al. Superconvergence of Local Discontinuous Galerkin methods for one-dimensional linear parabolic equations , 2014, Math. Comput..
[25] Slimane Adjerid,et al. Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem , 2006 .
[26] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[27] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .
[28] Jinchao Xu,et al. Estimate of the Convergence Rate of Finite Element Solutions to Elliptic Equations of Second Order with Discontinuous Coefficients , 2013, 1311.4178.
[29] WAIXIANG CAO,et al. Is 2k-Conjecture Valid for Finite Volume Methods? , 2014, SIAM J. Numer. Anal..
[30] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[31] Kye T. Wee,et al. An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..
[32] Xiaoming He,et al. Approximation capability of a bilinear immersed finite element space , 2008 .
[33] So-Hsiang Chou,et al. Superconvergence of finite volume methods for the second order elliptic problem , 2007 .
[34] Slimane Adjerid,et al. HIGHER-ORDER IMMERSED DISCONTINUOUS GALERKIN METHODS , 2007 .
[35] Waixiang Cao,et al. Superconvergence of immersed finite element methods for interface problems , 2015, Adv. Comput. Math..
[36] Chuanmiao Chen,et al. The highest order superconvergence for bi-k degree rectangular elements at nodes: A proof of 2k-conjecture , 2012, Math. Comput..
[37] Xu Zhang,et al. Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .
[38] Jim Douglas,et al. Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..
[39] D. Rose,et al. Some errors estimates for the box method , 1987 .
[40] T. Barth,et al. Finite Volume Methods: Foundation and Analysis , 2004 .
[41] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[42] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[43] Zhilin Li. The immersed interface method using a finite element formulation , 1998 .
[44] Xiaoming He,et al. A Bilinear Immersed Finite Volume Element Method For the Diffusion Equation with Discontinuous Coefficient , 2009 .
[45] Tao Lin,et al. New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.
[46] Tao Lin,et al. Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..
[47] Tao Lin,et al. A locking-free immersed finite element method for planar elasticity interface problems , 2013, J. Comput. Phys..
[48] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[49] Yuesheng Xu,et al. Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..
[50] Théodore Papadopoulo,et al. A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..