Superconvergence of Immersed Finite Volume Methods for One-Dimensional Interface Problems

In this paper, we introduce a class of high order immersed finite volume methods (IFVM) for one-dimensional interface problems. We show the optimal convergence of IFVM in $$H^1$$H1- and $$L^2$$L2-norms. We also prove some superconvergence results of IFVM. To be more precise, the IFVM solution is superconvergent of order $$p+2$$p+2 at the roots of generalized Lobatto polynomials, and the flux is superconvergent of order $$p+1$$p+1 at generalized Gauss points on each element including the interface element. Furthermore, for diffusion interface problems, the convergence rates for IFVM solution at the mesh points and the flux at generalized Gauss points can both be raised to 2p. These superconvergence results are consistent with those for the standard finite volume methods. Numerical examples are provided to confirm our theoretical analysis.

[1]  Vidar Thomée,et al.  High order local approximations to derivatives in the finite element method , 1977 .

[2]  Jinchao Xu,et al.  Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.

[3]  Tao Lin,et al.  Nonconforming immersed finite element spaces for elliptic interface problems , 2018, Comput. Math. Appl..

[4]  Zhang Zhimin,et al.  Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations , 2013, 1311.6938.

[5]  Waixiang Cao,et al.  Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations , 2013, J. Sci. Comput..

[6]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[7]  Tao Lin,et al.  A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods , 2015, J. Sci. Comput..

[8]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[9]  Endre Süli Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .

[10]  Michael Plexousakis,et al.  On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..

[11]  Xiaoming He,et al.  Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient , 2010, J. Syst. Sci. Complex..

[12]  Zhilin Li,et al.  The immersed finite volume element methods for the elliptic interface problems , 1999 .

[13]  Wei Guo,et al.  Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach , 2013, J. Comput. Phys..

[14]  Xu Zhang,et al.  Discontinuous Galerkin immersed finite element methods for parabolic interface problems , 2015, J. Comput. Appl. Math..

[15]  Chi-Wang Shu,et al.  Analysis of Optimal Superconvergence of Discontinuous Galerkin Method for Linear Hyperbolic Equations , 2012, SIAM J. Numer. Anal..

[16]  Zhimin Zhang,et al.  Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D , 2010, Math. Comput..

[17]  Slimane Adjerid,et al.  A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .

[18]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[19]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[20]  Waixiang Cao,et al.  Superconvergence of Discontinuous Galerkin Methods for Two-Dimensional Hyperbolic Equations , 2015, SIAM J. Numer. Anal..

[21]  Zhimin Zhang,et al.  Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems , 2015, Numerische Mathematik.

[22]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[23]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[24]  Waixiang Cao,et al.  Superconvergence of Local Discontinuous Galerkin methods for one-dimensional linear parabolic equations , 2014, Math. Comput..

[25]  Slimane Adjerid,et al.  Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem , 2006 .

[26]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[27]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .

[28]  Jinchao Xu,et al.  Estimate of the Convergence Rate of Finite Element Solutions to Elliptic Equations of Second Order with Discontinuous Coefficients , 2013, 1311.4178.

[29]  WAIXIANG CAO,et al.  Is 2k-Conjecture Valid for Finite Volume Methods? , 2014, SIAM J. Numer. Anal..

[30]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[31]  Kye T. Wee,et al.  An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..

[32]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[33]  So-Hsiang Chou,et al.  Superconvergence of finite volume methods for the second order elliptic problem , 2007 .

[34]  Slimane Adjerid,et al.  HIGHER-ORDER IMMERSED DISCONTINUOUS GALERKIN METHODS , 2007 .

[35]  Waixiang Cao,et al.  Superconvergence of immersed finite element methods for interface problems , 2015, Adv. Comput. Math..

[36]  Chuanmiao Chen,et al.  The highest order superconvergence for bi-k degree rectangular elements at nodes: A proof of 2k-conjecture , 2012, Math. Comput..

[37]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[38]  Jim Douglas,et al.  Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..

[39]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[40]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[41]  J. Bramble,et al.  Higher order local accuracy by averaging in the finite element method , 1977 .

[42]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[43]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[44]  Xiaoming He,et al.  A Bilinear Immersed Finite Volume Element Method For the Diffusion Equation with Discontinuous Coefficient , 2009 .

[45]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[46]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[47]  Tao Lin,et al.  A locking-free immersed finite element method for planar elasticity interface problems , 2013, J. Comput. Phys..

[48]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[49]  Yuesheng Xu,et al.  Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..

[50]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..