Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

[1]  S. Mamet,et al.  Global hotspots for soil nature conservation , 2022, Nature.

[2]  M. V. D. van der Heijden,et al.  Soil microbiomes and one health , 2022, Nature reviews. Microbiology.

[3]  L. Zhang,et al.  Drivers and trends of global soil microbial carbon over two decades , 2022, Nature Communications.

[4]  Zuzana V. Harmáčková,et al.  Expert perspectives on global biodiversity loss and its drivers and impacts on people , 2022, Frontiers in Ecology and the Environment.

[5]  S. Shimano,et al.  Another mite species discovered via social media - Ameronothrus retweet sp. nov. (Acari, Oribatida) from Japanese coasts, exhibiting an interesting sexual dimorphism , 2022 .

[6]  W. Thuiller,et al.  Differential Effects of Soil Trophic Networks on Microbial Decomposition Activity in Mountain Ecosystems , 2022, SSRN Electronic Journal.

[7]  Alexander J. Probst,et al.  Carbon fixation rates in groundwater similar to those in oligotrophic marine systems , 2022, Nature Geoscience.

[8]  M. Schloter,et al.  Metadata harmonization–Standards are the key for a better usage of omics data for integrative microbiome analysis , 2022, Environmental microbiome.

[9]  A. MacNeil,et al.  Predictive models aren't for causal inference. , 2022, Ecology letters.

[10]  L. Poorter,et al.  Ten simple rules for managing communications with a large number of coauthors , 2022, PLoS Comput. Biol..

[11]  M. V. D. van der Heijden,et al.  Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi , 2022, iScience.

[12]  Nature addresses helicopter research and ethics dumping , 2022, Nature.

[13]  C. Laforsch,et al.  Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential , 2022, Scientific Reports.

[14]  M. V. D. van der Heijden,et al.  Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts , 2022, Nature Ecology & Evolution.

[15]  M. Rillig,et al.  Challenges of and opportunities for protecting European soil biodiversity , 2022, Conservation biology : the journal of the Society for Conservation Biology.

[16]  G. Kowalchuk,et al.  Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health , 2022, The ISME Journal.

[17]  G. Brown,et al.  Soil macroinvertebrate communities: A world‐wide assessment , 2022, Global Ecology and Biogeography.

[18]  L. Tedersoo,et al.  Best practices in metabarcoding of fungi: From experimental design to results , 2022, Molecular ecology.

[19]  G. Berg,et al.  The plant microbiota signature of the Anthropocene as a challenge for microbiome research , 2022, Microbiome.

[20]  F. Hildebrand,et al.  Structure and function of the soil microbiome underlying N2O emissions from global wetlands , 2022, Nature Communications.

[21]  Amber Hartman Scholz,et al.  Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation , 2022, Nature Communications.

[22]  B. Klarner,et al.  Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates , 2022, Biological reviews of the Cambridge Philosophical Society.

[23]  J. Cortet,et al.  Global monitoring of soil animal communities using a common methodology , 2022, bioRxiv.

[24]  T. Crowther,et al.  Forest tree growth is linked to mycorrhizal fungal composition and function across Europe , 2022, The ISME Journal.

[25]  Jizhong Zhou,et al.  Disentangling direct from indirect relationships in association networks , 2022, Proceedings of the National Academy of Sciences.

[26]  C. Körner,et al.  Long-term monitoring of high-elevation terrestrial and aquatic ecosystems in the Alps – a five-year synthesis , 2022, eco.mont (Journal on Protected Mountain Areas Research).

[27]  D. Garlaschelli,et al.  Local stability properties of complex, species‐rich soil food webs with functional block structure , 2021, Ecology and evolution.

[28]  L. Sutherland,et al.  On-farm demonstration: enabling peer-to-peer learning , 2021, The Journal of Agricultural Education and Extension.

[29]  N. Eisenhauer,et al.  Invertebrate biodiversity and conservation , 2021, Current Biology.

[30]  S. Geisen The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives , 2021, mSystems.

[31]  Stephanie D. Jurburg,et al.  Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning , 2021, ISME Communications.

[32]  N. Eisenhauer,et al.  Unearthing soil ecological observations: see supporting information as supplementary material , 2021 .

[33]  N. Eisenhauer,et al.  Out of the dark: Using energy flux to connect above‐ and belowground communities and ecosystem functioning , 2021, European Journal of Soil Science.

[34]  J. Thiele,et al.  Contrasting responses of above- and belowground diversity to multiple components of land-use intensity , 2021, Nature Communications.

[35]  Graham W. Taylor,et al.  Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision , 2021, Methods in Ecology and Evolution.

[36]  A. Potapov Multifunctionality of belowground food webs: resource, size and spatial energy channels , 2021, bioRxiv.

[37]  L. Bernatchez,et al.  Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification , 2021, Molecular ecology resources.

[38]  B. Griffiths,et al.  Microbial Community Resilience across Ecosystems and Multiple Disturbances , 2021, Microbiology and Molecular Biology Reviews.

[39]  N. Yoccoz,et al.  Cascading effects of moth outbreaks on subarctic soil food webs , 2021, Scientific Reports.

[40]  N. Eisenhauer,et al.  Soil fauna diversity and chemical stressors: a review of knowledge gaps and roadmap for future research , 2021, Ecography.

[41]  Felix E. Wettstein,et al.  Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils-the Ghost of a Conventional Agricultural Past? , 2021, Environmental science & technology.

[42]  C. Gaucherel,et al.  Maintaining biodiversity promotes the multifunctionality of social-ecological systems: holistic modelling of a mountain system , 2021, Ecosystem Services.

[43]  C. Guerra,et al.  Tracking, targeting, and conserving soil biodiversity , 2021, Science.

[44]  L. Tedersoo,et al.  Towards revealing the global diversity and community assembly of soil eukaryotes. , 2021, Ecology letters.

[45]  Stephanie D. Jurburg,et al.  The multidimensionality of soil macroecology , 2020, Global ecology and biogeography : a journal of macroecology.

[46]  C. Guerra,et al.  Global projections of the soil microbiome in the Anthropocene , 2020, Global ecology and biogeography : a journal of macroecology.

[47]  OUP accepted manuscript , 2021, FEMS Microbiology Reviews.

[48]  S. Geisen,et al.  Organism body size structures the soil microbial and nematode community assembly at a continental and global scale , 2020, Nature Communications.

[49]  Martti Vasar,et al.  FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles , 2020, Fungal Diversity.

[50]  E. Schulze,et al.  Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning , 2020, Nature Ecology & Evolution.

[51]  Erlend B. Nilsen,et al.  Effective Biodiversity Monitoring Needs a Culture of Integration , 2020, One Earth.

[52]  Victoria J Burton,et al.  Methods and approaches to advance soil macroecology , 2020 .

[53]  P. Reich,et al.  Rising Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems , 2020, Advanced science.

[54]  N. Eisenhauer,et al.  Lessons from the WBF2020: extrinsic and intrinsic value of soil organisms. , 2020, Soil organisms.

[55]  M. Schloter,et al.  Development of Microbiome Biobanks - Challenges and Opportunities. , 2020, Trends in microbiology.

[56]  T. Crowther,et al.  Building a global database of soil microbial biomass and function: a call for collaboration. , 2020, Soil organisms.

[57]  I. Nijs,et al.  Microclimate shifts in a dynamic world , 2020, Science.

[58]  T. Crowther,et al.  A trait-based understanding of wood decomposition by fungi , 2020, Proceedings of the National Academy of Sciences.

[59]  C. Guerra,et al.  The proportion of soil-borne pathogens increases with warming at the global scale , 2020, Nature Climate Change.

[60]  Jonas Ardö,et al.  SoilTemp: A global database of near‐surface temperature , 2020, Global change biology.

[61]  Nadejda A. Soudzilovskaia,et al.  FungalRoot: Global online database of plant mycorrhizal associations. , 2020, The New phytologist.

[62]  J. Lenoir,et al.  A framework to bridge scales in distribution modelling of soil microbiota. , 2020, FEMS microbiology ecology.

[63]  M. Zobel,et al.  How mycorrhizal associations drive plant population and community biology , 2020, Science.

[64]  S. Reed,et al.  Multiple elements of soil biodiversity drive ecosystem functions across biomes , 2020, Nature Ecology & Evolution.

[65]  Mayton,et al.  Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth , 2020 .

[66]  Jens Kattge,et al.  The fungal collaboration gradient dominates the root economics space in plants , 2020, Science Advances.

[67]  F. D. de Vries,et al.  Plant root exudation under drought: implications for ecosystem functioning. , 2020, The New phytologist.

[68]  F. Maestre,et al.  Recommendations for establishing global collaborative networks in soil ecology. , 2019, Soil organisms.

[69]  B. Klarner,et al.  Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. , 2019, The Journal of animal ecology.

[70]  C. Guerra,et al.  Towards an integrative understanding of soil biodiversity , 2019, Biological reviews of the Cambridge Philosophical Society.

[71]  M. Rillig,et al.  The role of multiple global change factors in driving soil functions and microbial biodiversity , 2019, Science.

[72]  D. Wall,et al.  Challenges and Opportunities for Soil Biodiversity in the Anthropocene , 2019, Current Biology.

[73]  W. Thuiller,et al.  From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices? , 2019, Journal of Biogeography.

[74]  A. Heintz‐Buschart,et al.  Blind spots in global soil biodiversity and ecosystem function research , 2019, Nature Communications.

[75]  Nadejda A. Soudzilovskaia,et al.  Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems , 2019, Journal of Ecology.

[76]  T. Crowther,et al.  The global soil community and its influence on biogeochemistry , 2019, Science.

[77]  P. Reich,et al.  The results of biodiversity–ecosystem functioning experiments are realistic , 2019, bioRxiv.

[78]  Diana H. Wall,et al.  Soil nematode abundance and functional group composition at a global scale , 2019, Nature.

[79]  A. Straathof,et al.  Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling , 2019, The New phytologist.

[80]  F. Maestre,et al.  A few Ascomycota taxa dominate soil fungal communities worldwide , 2019, Nature Communications.

[81]  C. Guerra,et al.  Global mismatches in aboveground and belowground biodiversity , 2019, Conservation biology : the journal of the Society for Conservation Biology.

[82]  M. Delgado‐Baquerizo Obscure soil microbes and where to find them , 2019, The ISME Journal.

[83]  Birgitta König-Ries,et al.  Global distribution of earthworm diversity , 2019, Science.

[84]  M. V. D. van der Heijden,et al.  Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields , 2019, Agriculture, Ecosystems & Environment.

[85]  T. Crowther,et al.  Consistent trade-offs in fungal trait expression across broad spatial scales , 2019, Nature Microbiology.

[86]  Y. Ok,et al.  Soil pollution — speed up global mapping , 2019, Nature.

[87]  Nico Eisenhauer,et al.  Recognizing the quiet extinction of invertebrates , 2019, Nature Communications.

[88]  Muhammad Saleem,et al.  More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health , 2019, Annual Review of Ecology, Evolution, and Systematics.

[89]  Sixing Huang,et al.  Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. , 2019, Systematic and applied microbiology.

[90]  N. Sanders,et al.  Macroecology to Unite All Life, Large and Small. , 2018, Trends in ecology & evolution.

[91]  P. Bork,et al.  Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment , 2018, Environmental microbiology reports.

[92]  P. Taberlet,et al.  Mapping the imprint of biotic interactions on β-diversity. , 2018, Ecology letters.

[93]  Falk Hildebrand,et al.  Structure and function of the global topsoil microbiome , 2018, Nature.

[94]  C. Wirth,et al.  Biodiversity across trophic levels drives multifunctionality in highly diverse forests , 2018, Nature Communications.

[95]  Luke R. Thompson,et al.  Best practices for analysing microbiomes , 2018, Nature Reviews Microbiology.

[96]  S. Scheu,et al.  Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition , 2018, Biological reviews of the Cambridge Philosophical Society.

[97]  L. Basten Snoek,et al.  Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion , 2018 .

[98]  Eoin L. Brodie,et al.  Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly , 2018, Nature Microbiology.

[99]  S. Scheu,et al.  Structural and functional characteristics of high alpine soil macro-invertebrate communities , 2018 .

[100]  U. Brose,et al.  Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning. , 2018, Trends in ecology & evolution.

[101]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[102]  C. Ballabio,et al.  LUCAS Soil, the largest expandable soil dataset for Europe: a review , 2018 .

[103]  T. M. Bezemer,et al.  Plant-Soil Feedback: Bridging Natural and Agricultural Sciences. , 2017, Trends in ecology & evolution.

[104]  P. Cairney,et al.  How to communicate effectively with policymakers: combine insights from psychology and policy studies , 2017, Palgrave Communications.

[105]  P. Reich,et al.  Reduced feeding activity of soil detritivores under warmer and drier conditions , 2017, Nature Climate Change.

[106]  P. Reich,et al.  Warming alters the energetic structure and function but not resilience of soil food webs , 2017, Nature Climate Change.

[107]  B. Griffiths,et al.  Priorities for research in soil ecology. , 2017, Pedobiologia.

[108]  Meghan L. Avolio,et al.  Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years , 2017, Global change biology.

[109]  N. Eisenhauer,et al.  Warming magnifies predation and reduces prey coexistence in a model litter arthropod system , 2017, Proceedings of the Royal Society B: Biological Sciences.

[110]  M. Winter,et al.  Red list of a black box , 2017, Nature Ecology &Evolution.

[111]  Jörg Overmann,et al.  Microbiological Research Under the Nagoya Protocol: Facts and Fiction. , 2017, Trends in microbiology.

[112]  D. Merritt,et al.  Seed Coating: Science or Marketing Spin? , 2017, Trends in plant science.

[113]  Xiaowei Zhang,et al.  Where less may be more: how the rare biosphere pulls ecosystems strings , 2017, The ISME Journal.

[114]  M. Bradford Re-visioning soil food webs , 2016 .

[115]  M. Parker,et al.  Good and Bad Research Collaborations: Researchers’ Views on Science and Ethics in Global Health Research , 2016, PloS one.

[116]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[117]  Nico Eisenhauer,et al.  Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems , 2016 .

[118]  M. Schloter,et al.  Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality , 2016, Nature.

[119]  M. V. D. van der Heijden,et al.  An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. , 2016, Trends in ecology & evolution.

[120]  Peter B Reich,et al.  Microbial diversity drives multifunctionality in terrestrial ecosystems , 2016, Nature Communications.

[121]  W. Ulrich,et al.  Increasing aridity reduces soil microbial diversity and abundance in global drylands , 2015, Proceedings of the National Academy of Sciences.

[122]  J. Six,et al.  Soil biodiversity and human health , 2015, Nature.

[123]  Nadejda A. Soudzilovskaia,et al.  Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. , 2015, The New phytologist.

[124]  J. Ladau,et al.  Toward a global platform for linking soil biodiversity data , 2015, Front. Ecol. Evol..

[125]  J. Kattge,et al.  Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks , 2015 .

[126]  E. Blagodatskaya,et al.  Microbial hotspots and hot moments in soil: Concept & review , 2015 .

[127]  Nico Eisenhauer,et al.  From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology , 2015 .

[128]  A. Magurran,et al.  Fifteen forms of biodiversity trend in the Anthropocene. , 2015, Trends in ecology & evolution.

[129]  Angela C. Poole,et al.  Selection on soil microbiomes reveals reproducible impacts on plant function , 2014, The ISME Journal.

[130]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[131]  Richard D. Bardgett,et al.  Belowground biodiversity and ecosystem functioning , 2014, Nature.

[132]  Hubert Höfer,et al.  The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse , 2014 .

[133]  Chris Mungall,et al.  Global biotic interactions: An open infrastructure to share and analyze species-interaction datasets , 2014, Ecol. Informatics.

[134]  Malte Jochum,et al.  Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning , 2014, Nature Communications.

[135]  U. Brose,et al.  Into darkness: unravelling the structure of soil food webs , 2014 .

[136]  P. V. van Bodegom,et al.  A fully traits-based approach to modeling global vegetation distribution , 2014, Proceedings of the National Academy of Sciences.

[137]  J. Cortet,et al.  Current use of and future needs for soil invertebrate functional traits in community ecology , 2014 .

[138]  M. V. D. van der Heijden,et al.  Soil biodiversity and soil community composition determine ecosystem multifunctionality , 2014, Proceedings of the National Academy of Sciences.

[139]  Peter B. Adler,et al.  Finding generality in ecology: a model for globally distributed experiments , 2014 .

[140]  David M. Richardson,et al.  Biodiversity and Ecosystem Functioning , 2014 .

[141]  David A. Wardle,et al.  Community and ecosystem responses to elevational gradients: processes, mechanisms and insights for global change , 2013 .

[142]  Nadejda A. Soudzilovskaia,et al.  Functional traits predict relationship between plant abundance dynamic and long-term climate warming , 2013, Proceedings of the National Academy of Sciences.

[143]  Peter E. Thornton,et al.  A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems , 2013 .

[144]  B. Griffiths,et al.  Insights into the resistance and resilience of the soil microbial community. , 2013, FEMS microbiology reviews.

[145]  C. Blackwood,et al.  The spatial scaling of saprotrophic fungal beta diversity in decomposing leaves , 2013, Molecular ecology.

[146]  P. Reich,et al.  Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. , 2012, Ecology.

[147]  H. Setälä,et al.  Land use alters the resistance and resilience of soil food webs to drought , 2012 .

[148]  Peter B. Reich,et al.  Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions , 2012 .

[149]  Edward Baker,et al.  Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science , 2011, ZooKeys.

[150]  B. Hungate,et al.  A meta-analysis of responses of soil biota to global change , 2011, Oecologia.

[151]  E. Bakker,et al.  Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations , 2010 .

[152]  T. Decaëns Macroecological patterns in soil communities , 2010 .

[153]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[154]  P. Reich,et al.  A global study of relationships between leaf traits, climate and soil measures of nutrient fertility , 2009 .

[155]  S. Allison,et al.  Resistance, resilience, and redundancy in microbial communities , 2008, Proceedings of the National Academy of Sciences.

[156]  C. Violle,et al.  Let the concept of trait be functional , 2007 .

[157]  M. Loreau,et al.  Biodiversity Effects on Soil Processes Explained by Interspecific Functional Dissimilarity , 2004, Science.

[158]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[159]  P. Reich,et al.  A handbook of protocols for standardised and easy measurement of plant functional traits worldwide , 2003 .

[160]  Mark A. Bradford,et al.  Microbiota, fauna, and mesh size interactions in litter decomposition , 2002 .

[161]  H. Setälä,et al.  Soil processes are not influenced by the functional complexity of soil decomposer food webs under disturbance , 2002 .

[162]  B. Griffiths,et al.  Links between substrate additions, native microbes, and the structural complexity and stability of soils , 1999 .

[163]  D. Schimel,et al.  Terrestrial ecosystems and the carbon cycle , 1995 .

[164]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .