Boosting the Efficiency of an 800 MW-Class Power Plant through Utilization of Low Temperature Heat of Flue Gases

This article presents an analysis on possible ways of utilizing low-temperature waste heat. If well-designed, this could contribute to increasing the efficiency of power plants without introducing many complex changes to the whole system. The main analysis focuses on the location of the regenerative heat exchanger in the facility. This could differ with varying temperatures of working media in the system. The base for investigations was a 800 MW-class power unit operating in off-design conditions and supplied with steam from an BB2400 boiler. Modifications to the model were made using commercially available software and by applying the Stodola equation and the SCC method. It allowed to determine the most suitable position for installing the low-temperature heat exchanger. Calculations for off-design conditions show that, after making some modifications to the system, both heat and electricity generation could be increased through the addition of a low-temperature heat exchanger.

[1]  Petronilla Fragiacomo,et al.  A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems , 2012 .

[2]  Anna Skorek-Osikowska,et al.  Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation , 2014 .

[3]  G. Cinti,et al.  Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment , 2012 .

[4]  J. M. Chawla Waste heat recovery from flue gases with substantial dust load , 1999 .

[5]  Atsushi Tsutsumi,et al.  Analysis of IGFC With Exergy Recuperation and Carbon Dioxide Separation Unit , 2012 .

[6]  Jarosław Milewski,et al.  Solid Oxide Fuel Cell Fuelled by Biofuels , 2009 .

[7]  Jarosław Milewski,et al.  Reducing CO2 Emissions From a Coal Fired Power Plant by Using a Molten Carbonate Fuel Cell , 2008 .

[8]  B. Reddy,et al.  Second law analysis of a waste heat recovery based power generation system , 2007 .

[9]  Anna Skorek-Osikowska,et al.  Integracja bloku elektrociepłowni węglowej na parametry nadkrytyczne z instalacją wychwytu dwutlenku węgla oraz turbiną gazową , 2012 .

[10]  Shuang-Ying Wu,et al.  EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER , 2005 .

[11]  Wojciech M. Budzianowski,et al.  An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane , 2010 .

[12]  Petronilla Fragiacomo,et al.  Electrical and electrical–thermal power plants with molten carbonate fuel cell/gas turbine‐integrated systems , 2012 .

[13]  Hao Wu,et al.  Flexible heat exchanger network design for low-temperature heat utilization in oil refinery , 2011 .

[14]  Jung-Yang San,et al.  Second-law performance of heat exchangers for waste heat recovery , 2010 .

[15]  Anna Skorek-Osikowska,et al.  Porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego GazEla , 2012 .

[16]  Janusz Kotowicz,et al.  Experimental stand for CO2 membrane separation , 2011 .

[17]  Łukasz Bartela,et al.  The influence of economic parameters on the optimal values of the design variables of a combined cycle plant , 2010 .

[18]  J Yan,et al.  Performance evaluation of adding ethanol production into an existing combined heat and power plant. , 2010, Bioresource technology.

[19]  Łukasz Bartela,et al.  Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant , 2012 .

[20]  Shuang-Ying Wu,et al.  EXERGY TRANSFER CHARACTERISTICS ON LOW TEMPERATURE HEAT EXCHANGERS , 2007 .

[21]  Georges Descombes,et al.  Modelling of waste heat recovery for combined heat and power applications , 2009 .

[22]  Chonghun Han,et al.  A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant , 2012 .

[23]  Shuang-Ying Wu,et al.  The Analysis of Exergy Efficiency in the Low Temperature Heat Exchanger , 2007 .

[24]  K. Janusz-Szymańska Efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS , 2012 .

[25]  Jarosław Milewski,et al.  Solid oxide fuel cell fuelled by biogases , 2009 .