Boosting the Efficiency of an 800 MW-Class Power Plant through Utilization of Low Temperature Heat of Flue Gases
暂无分享,去创建一个
[1] Petronilla Fragiacomo,et al. A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems , 2012 .
[2] Anna Skorek-Osikowska,et al. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation , 2014 .
[3] G. Cinti,et al. Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment , 2012 .
[4] J. M. Chawla. Waste heat recovery from flue gases with substantial dust load , 1999 .
[5] Atsushi Tsutsumi,et al. Analysis of IGFC With Exergy Recuperation and Carbon Dioxide Separation Unit , 2012 .
[6] Jarosław Milewski,et al. Solid Oxide Fuel Cell Fuelled by Biofuels , 2009 .
[7] Jarosław Milewski,et al. Reducing CO2 Emissions From a Coal Fired Power Plant by Using a Molten Carbonate Fuel Cell , 2008 .
[8] B. Reddy,et al. Second law analysis of a waste heat recovery based power generation system , 2007 .
[9] Anna Skorek-Osikowska,et al. Integracja bloku elektrociepłowni węglowej na parametry nadkrytyczne z instalacją wychwytu dwutlenku węgla oraz turbiną gazową , 2012 .
[10] Shuang-Ying Wu,et al. EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER , 2005 .
[11] Wojciech M. Budzianowski,et al. An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane , 2010 .
[12] Petronilla Fragiacomo,et al. Electrical and electrical–thermal power plants with molten carbonate fuel cell/gas turbine‐integrated systems , 2012 .
[13] Hao Wu,et al. Flexible heat exchanger network design for low-temperature heat utilization in oil refinery , 2011 .
[14] Jung-Yang San,et al. Second-law performance of heat exchangers for waste heat recovery , 2010 .
[15] Anna Skorek-Osikowska,et al. Porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego GazEla , 2012 .
[16] Janusz Kotowicz,et al. Experimental stand for CO2 membrane separation , 2011 .
[17] Łukasz Bartela,et al. The influence of economic parameters on the optimal values of the design variables of a combined cycle plant , 2010 .
[18] J Yan,et al. Performance evaluation of adding ethanol production into an existing combined heat and power plant. , 2010, Bioresource technology.
[19] Łukasz Bartela,et al. Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant , 2012 .
[20] Shuang-Ying Wu,et al. EXERGY TRANSFER CHARACTERISTICS ON LOW TEMPERATURE HEAT EXCHANGERS , 2007 .
[21] Georges Descombes,et al. Modelling of waste heat recovery for combined heat and power applications , 2009 .
[22] Chonghun Han,et al. A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant , 2012 .
[23] Shuang-Ying Wu,et al. The Analysis of Exergy Efficiency in the Low Temperature Heat Exchanger , 2007 .
[24] K. Janusz-Szymańska. Efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS , 2012 .
[25] Jarosław Milewski,et al. Solid oxide fuel cell fuelled by biogases , 2009 .