Polymerizable Ammonium Salt Interlayer for Efficient and Stable NiOx-Based Perovskite Solar Cells

[1]  Jia Yang,et al.  High-Efficiency and Stable Perovskite Photodetectors with an F4-TCNQ-Modified Interface of NiOx and Perovskite Layers. , 2022, The journal of physical chemistry letters.

[2]  Xiaodong Li,et al.  Photoconductive NiOx Hole Transport Layer for Efficient Perovskite Solar Cells , 2022, Chemical Engineering Journal.

[3]  Yiwang Chen,et al.  Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells , 2021 .

[4]  Yana Vaynzof,et al.  23.7% Efficient inverted perovskite solar cells by dual interfacial modification , 2021, Science advances.

[5]  Jihuai Wu,et al.  Rear Interface Engineering to Suppress Migration of Iodide Ions for Efficient Perovskite Solar Cells with Minimized Hysteresis , 2021, Advanced Functional Materials.

[6]  Huayu Bao,et al.  Restricting lithium-ion migration via Lewis base groups in hole transporting materials for efficient and stable perovskite solar cells , 2021, Chemical Engineering Journal.

[7]  Dongqin Bi,et al.  Hydrophobic Fluorinated Conjugated Polymer as a Multifunctional Interlayer for High-Performance Perovskite Solar Cells , 2021, ACS Photonics.

[8]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[9]  Shangfeng Yang,et al.  Surface Modification of PEDOT:PSS for Enhanced Performance of Inverted Perovskite Solar Cells , 2021 .

[10]  A. Hagfeldt,et al.  Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. , 2021, Journal of the American Chemical Society.

[11]  Jin Zhao,et al.  Polymerized Hybrid Perovskites with Enhanced Stability, Flexibility, and Lattice Rigidity , 2021, Advanced materials.

[12]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[13]  Likun Wang,et al.  High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. , 2020, Angewandte Chemie.

[14]  Q. Gong,et al.  Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites , 2020, Advanced materials.

[15]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[16]  Y. Hao,et al.  NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells , 2020, Advanced science.

[17]  Peng Zhang,et al.  High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells , 2020, Advanced Energy Materials.

[18]  Liyuan Han,et al.  Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability , 2020, Solar RRL.

[19]  Sumei Huang,et al.  High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide modified interface of NiOx and perovskite layers. , 2019, ACS applied materials & interfaces.

[20]  Wenjun Zhang,et al.  In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells , 2018, Nature Communications.

[21]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[22]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[23]  Gang Li,et al.  Stable and Efficient Organo‐Metal Halide Hybrid Perovskite Solar Cells via π‐Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction , 2018, Advanced materials.

[24]  Chunhui Huang,et al.  Hole‐Transporting Materials in Inverted Planar Perovskite Solar Cells , 2016 .

[25]  Q. Gong,et al.  Inverted Perovskite Solar Cells: Progresses and Perspectives , 2016 .

[26]  John E. Bercaw,et al.  NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist , 2010 .