Unsupervised Visual Data Mining Using Self-organizing Maps and a Data-driven Color Mapping

This paper presents a new approach for visually mining multivariate datasets and especially large ones. This unsupervised approach proposes to mix a SOM approach and a pixel-oriented visualization. The map is considered as a set of connected pixels, the space filling is driven by the SOM algorithm, and the color of each pixel is computed directly from data using an approach proposed by Blanchard et al. The method visually summarizes the data and helps in understanding its inner structure.

[1]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[2]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  Michel Herbin,et al.  A New Pixel-Oriented Visualization Technique Through Color Image , 2005, Inf. Vis..

[5]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[6]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[7]  Mustapha Lebbah,et al.  Visualization and clustering of categorical data with probabilistic self-organizing map , 2009, Neural Computing and Applications.

[8]  A. Skupin,et al.  Self-organising maps : applications in geographic information science , 2008 .

[9]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[10]  Urska Cvek,et al.  High-Dimensional Visualizations , 2002 .

[11]  I. W. Evett,et al.  Rule induction in forensic science , 1989 .

[12]  B. Jiang,et al.  Cartographic Selection Using Self-Organizing Maps , 2002 .

[13]  Christos Faloutsos,et al.  Analysis of the Clustering Properties of the Hilbert Space-Filling Curve , 2001, IEEE Trans. Knowl. Data Eng..

[14]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[15]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[18]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[19]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[20]  Daniel A. Keim,et al.  Pixel-Oriented Visualization Techniques for Exploring Very Large Data Bases , 1996 .

[21]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[22]  Soo-Chang Pei,et al.  Effective palette indexing for image compression using self-organization of Kohonen feature map , 2006, IEEE Transactions on Image Processing.