Three-dimensional electronic structure in ferromagnetic Fe3Sn2 with breathing kagome bilayers

A large anomalous Hall effect (AHE) has been observed in ferromagnetic ${\mathrm{Fe}}_{3}{\mathrm{Sn}}_{2}$ with breathing kagome bilayers. To understand the underlying mechanism for this, we investigate the electronic structure of ${\mathrm{Fe}}_{3}{\mathrm{Sn}}_{2}$ by angle-resolved photoemission spectroscopy (ARPES). In particular, we use both vacuum ultraviolet light (VUV) and soft x ray (SX), which allow surface-sensitive and relatively bulk-sensitive measurements, respectively, and distinguish bulk states from surface states, which should be unlikely related to the AHE. While VUV-ARPES observes two-dimensional bands mostly due to surface states, SX-ARPES reveals three-dimensional band dispersions with a periodicity of the rhombohedral unit cell in the bulk. Our data show a good consistency with a theoretical calculation based on density functional theory, suggesting a possibility that ${\mathrm{Fe}}_{3}{\mathrm{Sn}}_{2}$ is a magnetic Weyl semimetal.

[1]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[2]  V. Strocov,et al.  k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES , 2019, Journal of Electron Spectroscopy and Related Phenomena.

[3]  X. Xi,et al.  Large topological Hall effect in a geometrically frustrated kagome magnet Fe3Sn2 , 2019, Applied Physics Letters.

[4]  C. Felser,et al.  Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP_{2}. , 2019, Physical review letters.

[5]  Naoto Nagaosa,et al.  Topological states on the breathing kagome lattice , 2018, Physical Review B.

[6]  Shuang Jia,et al.  Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet , 2018, Nature.

[7]  Shengbai Zhang,et al.  Flatbands and Emergent Ferromagnetic Ordering in Fe_{3}Sn_{2} Kagome Lattices. , 2018, Physical review letters.

[8]  Shik Shin,et al.  Functions to map photoelectron distributions in a variety of setups in angle-resolved photoemission spectroscopy. , 2017, The Review of scientific instruments.

[9]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[10]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Takeshi Kondo,et al.  Evidence for magnetic Weyl fermions in a correlated metal. , 2017, Nature materials.

[12]  James J. Mudd,et al.  A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. , 2016, The Review of scientific instruments.

[13]  Qi Wang,et al.  Anomalous Hall effect in a ferromagnetic Fe 3 Sn 2 single crystal with a geometrically frustrated Fe bilayer kagome lattice , 2016, 1610.04970.

[14]  Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[15]  Hikaru Kishimoto,et al.  Upgrade of beamline BL25SU for soft x-ray imaging and spectroscopy of solid using nano- and micro-focused beams at SPring-8 , 2016 .

[16]  M. Troyer,et al.  Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP_{2} (X=Mo, W). , 2016, Physical review letters.

[17]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[18]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[19]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[20]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[21]  Su-Yang Xu,et al.  An inversion breaking Weyl semimetal state in the TaAs material class , 2015 .

[22]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[23]  Tao Qian,et al.  A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.

[24]  D. R. Penn,et al.  Surface Sensitivity of Auger-Electron Spectroscopy and X-ray Photoelectron Spectroscopy , 2011 .

[25]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  M. Franz,et al.  Topological insulator on the kagome lattice , 2009, 0905.3385.

[27]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[28]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[29]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[31]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[32]  R. J. Elliott,et al.  Spin-Orbit Coupling in Band Theory—Character Tables for Some "Double" Space Groups , 1954 .

[33]  W. Opechowski Sur les groupes cristallographiques “doubles” , 1940 .

[34]  E. Wigner,et al.  Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals , 1936 .

[35]  Proceedings of the Royal Society (London) , 1906, Science.

[36]  Naoki Shimizu,et al.  Journal of Electron Spectroscopy and Related Phenomena 101--103 (1999) 761--764 , 1999 .

[37]  G. V. Chester,et al.  Solid State Physics , 2000 .