On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings

The ring decomposition technique of part I is extended to the case when the factors in the direct product decomposition are no longer fields but arbitrary chain rings. This includes not only the case of quasi-cyclic codes over rings but also the case of quasi-cyclic codes over fields whose co-index is no longer prime to the characteristic of the field. A new quaternary construction of the Leech lattice is derived.

[1]  T. Aaron Gulliver,et al.  A Link Between Quasi-Cyclic Codes and Convolutional Codes , 1998, IEEE Trans. Inf. Theory.

[2]  Vijay K. Bhargava,et al.  Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes , 1991, IEEE Trans. Inf. Theory.

[3]  Patrick Solé,et al.  Type II Codes Over F 4 + uF 4 . , 2001 .

[4]  Masaaki Harada,et al.  Type II Codes, Even Unimodular Lattices, and Invariant Rings , 1999, IEEE Trans. Inf. Theory.

[5]  Gérald E. Séguin,et al.  Structural properties and enumeration of quasi cyclic codes , 2005, Applicable Algebra in Engineering, Communication and Computing.

[6]  Vijay K. Bhargava,et al.  Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes over GF(3) and GF(4) , 1992, IEEE Trans. Inf. Theory.

[7]  Yair Be'ery,et al.  The twisted squaring construction, trellis complexity, and generalized weights of BCH and QR codes , 1996, IEEE Trans. Inf. Theory.

[8]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[9]  Vera Pless,et al.  Type II Codes over , 2002 .

[10]  Garry Hughes Constacyclic codes, cocycles and a u+v | u-v construction , 2000, IEEE Trans. Inf. Theory.

[11]  Patrick Fitzpatrick,et al.  Algebraic structure of quasicyclic codes , 2001, Discret. Appl. Math..

[12]  Walter Feit,et al.  A self-dual even (96, 48, 16) code (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[13]  N. J. A. Sloane,et al.  New binary codes , 1972, IEEE Trans. Inf. Theory.

[14]  B. R. McDonald Finite Rings With Identity , 1974 .

[15]  Graham H. Norton,et al.  On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.

[16]  Vera Pless,et al.  Symmetry Codes over GF(3) and New Five-Designs , 1972, J. Comb. Theory A.

[17]  Vijay K. Bhargava,et al.  Twelve good rate (m-r)/pm quasicyclic codes , 1993, IEEE Trans. Inf. Theory.

[18]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[19]  Frank R. Kschischang,et al.  Some ternary and quaternary codes and associated sphere packings , 1992, IEEE Trans. Inf. Theory.

[20]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[21]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[22]  A. Robert Calderbank,et al.  Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.

[23]  Patrick Solé,et al.  Type II Codes OverF4 + uF4 , 2001, Eur. J. Comb..

[24]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[25]  Tadao Kasami A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[26]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[27]  Vijay K. Bhargava,et al.  Nine good rate (m-1)/pm quasi-cyclic codes , 1992, IEEE Trans. Inf. Theory.

[28]  Garry Hughes,et al.  Codes and arrays from cocycles , 2001, Bulletin of the Australian Mathematical Society.