Antibacterial and biofilm inhibition activity of biofabricated silver nanoparticles against Xanthomonas oryzae pv. oryzae causing blight disease of rice instigates disease suppression

[1]  C. Chien,et al.  Analysis of genetic diversity of Xanthomonas oryzae pv. oryzae populations in Taiwan , 2019, Scientific Reports.

[2]  Tae-Jong Kim,et al.  Nitrogen Sources Inhibit Biofilm Formation by Xanthomonas oryzae pv. oryzae. , 2018, Journal of Microbiology and Biotechnology.

[3]  N. Mitter,et al.  Nanotechnology for Plant Disease Management , 2018, Agronomy.

[4]  Fenghuan Yang,et al.  Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation , 2018, Applied and Environmental Microbiology.

[5]  J. White,et al.  The Future of Nanotechnology in Plant Pathology. , 2018, Annual review of phytopathology.

[6]  P. Zheng,et al.  Niclosamide Blocks Rice Leaf Blight by Inhibiting Biofilm Formation of Xanthomonas oryzae , 2018, Front. Plant Sci..

[7]  Jianghu Cui,et al.  A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management , 2017 .

[8]  M. Zubair,et al.  Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3 , 2017, Front. Microbiol..

[9]  H. Chaturvedi,et al.  Plant Pathogenic Bacteria: Role of Quorum Sensing and Biofilm in Disease Development , 2017 .

[10]  R. Pandey,et al.  Thyme Oil Reduces Biofilm Formation and Impairs Virulence of Xanthomonas oryzae , 2017, Front. Microbiol..

[11]  Sandhya Mishra,et al.  Integrated Approach of Agri-nanotechnology: Challenges and Future Trends , 2017, Front. Plant Sci..

[12]  B. Singh,et al.  Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens , 2017, Scientific Reports.

[13]  G. Sundin,et al.  New insights on molecular regulation of biofilm formation in plant-associated bacteria. , 2016, Journal of integrative plant biology.

[14]  Lian Zhou,et al.  The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae. , 2016, Molecular plant-microbe interactions : MPMI.

[15]  K. Jangid,et al.  Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria , 2016, Front. Microbiol..

[16]  O. Dror,et al.  Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system. , 2015, Molecular plant pathology.

[17]  Xiaoyu Liang,et al.  The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation , 2015, PloS one.

[18]  D. Hu,et al.  Antibacterial Activity and Mechanism of Action of Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties on Rice Bacterial Leaf Blight , 2015, Molecules.

[19]  Y. Helman,et al.  Silencing the mob: disrupting quorum sensing as a means to fight plant disease. , 2015, Molecular plant pathology.

[20]  Sandhya Mishra,et al.  Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana. , 2015, Microbiological research.

[21]  Sandhya Mishra,et al.  Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture , 2015, Applied Microbiology and Biotechnology.

[22]  J. Starr,et al.  Nematicidal Effects of Silver Nanoparticles on Root-knot Nematode in Bermudagrass. , 2014, Journal of nematology.

[23]  P. Rajesh,et al.  Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. , 2014, Microbiological research.

[24]  B. Singh,et al.  Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat , 2014, PloS one.

[25]  M. R. Espuny,et al.  Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. , 2014, Microbiological research.

[26]  Sang-Won Lee,et al.  Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production , 2013, The plant pathology journal.

[27]  M. R. Vishnupriya,et al.  Pathotype and Genetic Diversity amongst Indian Isolates of Xanthomonas oryzae pv. oryzae , 2013, PloS one.

[28]  Tao Chen,et al.  Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. , 2013, ACS nano.

[29]  Gongyou Chen,et al.  The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. , 2013, Molecular plant-microbe interactions : MPMI.

[30]  Yu-Xi Gao,et al.  Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection , 2013, International journal of molecular sciences.

[31]  Shiping Wang,et al.  Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. , 2013, Current opinion in plant biology.

[32]  Tzu-Pi Huang,et al.  A Novel Two-Component Response Regulator Links rpf with Biofilm Formation and Virulence of Xanthomonas axonopodis pv. citri , 2013, PloS one.

[33]  M. Federle,et al.  Exploiting Quorum Sensing To Confuse Bacterial Pathogens , 2013, Microbiology and Molecular Reviews.

[34]  Bonnie L Bassler,et al.  Bacterial quorum sensing: its role in virulence and possibilities for its control. , 2012, Cold Spring Harbor perspectives in medicine.

[35]  G. Salmond,et al.  Top 10 plant pathogenic bacteria in molecular plant pathology. , 2012, Molecular plant pathology.

[36]  S. Arora,et al.  Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea , 2012, Applied Biochemistry and Biotechnology.

[37]  M. Garcia-Conesa,et al.  Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit Quorum Sensing in Yersinia enterocolitica: Phenotypic response and associated molecular changes. , 2012, Food chemistry.

[38]  C. Nautiyal,et al.  Reducing the allelopathic effect of Partheniumhysterophorus L. on wheat (Triticumaestivum L.) by Pseudomonasputida , 2012, Plant Growth Regulation.

[39]  J. M. Dow,et al.  Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. , 2011, Trends in microbiology.

[40]  Lian-Hui Zhang,et al.  Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. , 2011, Chemical reviews.

[41]  Lian-Hui Zhang,et al.  Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production , 2010, BMC Microbiology.

[42]  Nico Boon,et al.  Can Bacteria Evolve Resistance to Quorum Sensing Disruption? , 2010, PLoS pathogens.

[43]  J. M. Dow,et al.  The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice. , 2009, Microbiology.

[44]  Byoung-Moo Lee,et al.  Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonasoryzae pv oryzae , 2009, Biotechnology Letters.

[45]  P. Ronald,et al.  An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta. , 2008, BMC microbiology.

[46]  Lian-Hui Zhang,et al.  Quorum sensing and virulence regulation in Xanthomonas campestris. , 2008, FEMS microbiology reviews.

[47]  Chaozu He,et al.  The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice. , 2007, FEMS microbiology letters.

[48]  Kui Lin,et al.  Xanthomonas campestris cell–cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network , 2007, Molecular microbiology.

[49]  A. Bogdanove,et al.  Xanthomonas oryzae pathovars: model pathogens of a model crop. , 2006, Molecular plant pathology.

[50]  D. Coplin,et al.  Quorum sensing in plant-pathogenic bacteria. , 2003, Annual review of phytopathology.

[51]  Alan L. Jones,et al.  Antibiotic use in plant agriculture. , 2003, Annual review of phytopathology.

[52]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[53]  J. M. Dow,et al.  Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. , 2000, Microbiology.

[54]  R. Sonti,et al.  Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. , 2000, Molecular plant-microbe interactions : MPMI.

[55]  Lian-Hui Zhang,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora , 2000 .

[56]  J. M. Dow,et al.  Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. , 1996, Molecular plant-microbe interactions : MPMI.

[57]  Xiaoyu Liang,et al.  A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. , 2018, Molecular plant pathology.

[58]  Tae-Jong Kim,et al.  Nitrogen Sources Inhibit Biofilm Formation of Xanthomonas oryzae pv. oryzae. , 2018, Journal of microbiology and biotechnology.

[59]  Y. Dong,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Mew,et al.  Virulence of Xanthomonas oryzae pv. oryzae on Rice Lines Containing Single Resistance Genes and Gene Combinations. , 1999, Plant disease.

[61]  T. Mew,et al.  Focus on bacterial blight of rice. , 1993 .