Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance.

[1]  L. Olsson,et al.  Production of fungal α-amylase by Saccharomyces kluyveri in glucose-limited cultivations , 2004 .

[2]  Radhakrishnan Mahadevan,et al.  Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments , 2011, The ISME Journal.

[3]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[4]  M. A. Henson,et al.  Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture , 2007, Biotechnology and bioengineering.

[5]  Adam L. Meadows,et al.  Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. , 2010, Metabolic engineering.

[6]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[7]  Michael A Henson,et al.  Optimization of Fed‐Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models , 2006, Biotechnology progress.

[8]  Timothy J. Hanly,et al.  Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures , 2011, Applied Microbiology and Biotechnology.

[9]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[10]  Pu Li,et al.  Identification of parameter correlations for parameter estimation in dynamic biological models , 2013, BMC Systems Biology.

[11]  Timothy J. Hanly,et al.  Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures , 2013, Biotechnology for Biofuels.

[12]  Timothy J. Hanly,et al.  Dynamic flux balance modeling of microbial co‐cultures for efficient batch fermentation of glucose and xylose mixtures , 2011, Biotechnology and bioengineering.

[13]  Deepak Chandran,et al.  Computational tools for metabolic engineering. , 2012, Metabolic engineering.

[14]  J. Nielsen,et al.  Integration of gene expression data into genome-scale metabolic models. , 2004, Metabolic engineering.

[15]  S. R. Benedict A reagent for the detection of reducing sugars. 1908. , 2002, The Journal of biological chemistry.

[16]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[17]  Yixin Chen,et al.  Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1 , 2012, PLoS Comput. Biol..

[18]  J. Jacquez,et al.  Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .

[19]  R. Steuer Computational approaches to the topology, stability and dynamics of metabolic networks. , 2007, Phytochemistry.

[20]  B. Palsson,et al.  Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns , 1993 .

[21]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[22]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[23]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[24]  Argimiro R. Secchi,et al.  Accelerating the parameters identifiability procedure: Set by set selection , 2013, Comput. Chem. Eng..

[25]  Y. Schneider,et al.  Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells , 2006, Bioprocess and biosystems engineering.

[26]  Intawat Nookaew,et al.  The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism , 2008, BMC Syst. Biol..

[27]  Eduardo Agosin,et al.  Effective Dissolved Oxygen Control Strategy for High-Cell-Density Cultures , 2014, IEEE Latin America Transactions.

[28]  Kai Li,et al.  Exploring the functional landscape of gene expression: directed search of large microarray compendia , 2007, Bioinform..

[29]  Claudio Bruno,et al.  Coupling kinetic expressions and metabolic networks for predicting wine fermentations , 2007, Biotechnology and bioengineering.

[30]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[31]  Hal S Alper,et al.  Using flux balance analysis to guide microbial metabolic engineering. , 2012, Methods in molecular biology.

[32]  Vassily Hatzimanikatis,et al.  Insights into the relation between mRNA and protein expression patterns: I. theoretical considerations , 2003, Biotechnology and bioengineering.

[33]  D. Sarkar,et al.  Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production , 2014, Bioprocess and Biosystems Engineering.

[34]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[36]  Francis J. Doyle,et al.  Modeling Cortisol Dynamics in the Neuro-endocrine Axis Distinguishes Normal, Depression, and Post-traumatic Stress Disorder (PTSD) in Humans , 2012, PLoS Comput. Biol..

[37]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[38]  Jong Myoung Park,et al.  Constraints-based genome-scale metabolic simulation for systems metabolic engineering. , 2009, Biotechnology advances.

[39]  P A Vanrolleghem,et al.  Practical identifiability of model parameters by combined respirometric-titrimetric measurements. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[40]  Merja Penttilä,et al.  Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis , 2012, The FEBS journal.

[41]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[42]  Ali R. Zomorrodi,et al.  Mathematical optimization applications in metabolic networks. , 2012, Metabolic engineering.

[43]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[44]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[45]  Eva Balsa-Canto,et al.  An iterative identification procedure for dynamic modeling of biochemical networks , 2010, BMC Systems Biology.

[46]  Jianying Gao,et al.  Dynamic Metabolic Modeling for a MAB Bioprocess , 2007, Biotechnology progress.

[47]  J. Ricardo Pérez-Correa,et al.  Modeling oxygen dissolution and biological uptake during pulse oxygen additions in oenological fermentations , 2012, Bioprocess and Biosystems Engineering.

[48]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[49]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[50]  K. Kwast,et al.  Metabolic-State-Dependent Remodeling of the Transcriptome in Response to Anoxia and Subsequent Reoxygenation in Saccharomyces cerevisiae , 2006, Eukaryotic Cell.

[51]  Erwin P. Gianchandani,et al.  The application of flux balance analysis in systems biology , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[52]  M A Henson,et al.  Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. , 2009, IET systems biology.

[53]  John Villadsen,et al.  Optimal fed-batch cultivation when mass transfer becomes limiting. , 2007, Biotechnology and bioengineering.

[54]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[55]  Felipe F. Aceituno,et al.  Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions. , 2014, FEMS yeast research.

[56]  P I Barton,et al.  A reliable simulator for dynamic flux balance analysis , 2013, Biotechnology and bioengineering.

[57]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[58]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[59]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[60]  A. Hortaçsu,et al.  A fuzzy logic approach for regulation in flux balance analysis , 2008 .

[61]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[62]  Claudio A. Gelmi,et al.  Improved calibration of a solid substrate fermentation model , 2011 .

[63]  David E Block,et al.  A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. , 2009, Metabolic engineering.

[64]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[65]  Pedro Mendes,et al.  Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network , 2012, BMC Systems Biology.

[66]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[67]  J. Pronk,et al.  Glucose Uptake Kinetics and Transcription of HXTGenes in Chemostat Cultures of Saccharomyces cerevisiae * , 1999, The Journal of Biological Chemistry.

[68]  M. Soledad Diaz,et al.  Global sensitivity analysis in dynamic metabolic networks , 2010, Comput. Chem. Eng..

[69]  Neil Swainston,et al.  Further developments towards a genome-scale metabolic model of yeast , 2010, BMC Systems Biology.

[70]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[71]  Felipe F. Aceituno,et al.  Enological Conditions under Carbon-Sufficient , Nitrogen-Limited Saccharomyces cerevisiae EC 1118 Grown Oxygen Response of the Wine Yeast , 2012 .

[72]  Ryan Nolan,et al.  Dynamic model of CHO cell metabolism. , 2011, Metabolic engineering.

[73]  H. Holzhütter The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. , 2004, European journal of biochemistry.

[74]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[75]  Thomas Sauter,et al.  Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction. , 2006, Biophysical journal.

[76]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[77]  Nathan D. Price,et al.  Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance , 2013, Database J. Biol. Databases Curation.

[78]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[79]  I. Nookaew,et al.  Fifteen years of large scale metabolic modeling of yeast: developments and impacts. , 2012, Biotechnology advances.

[80]  Eduardo Agosin,et al.  Modeling of yeast metabolism and process dynamics in batch fermentation , 2003, Biotechnology and bioengineering.

[81]  Eduardo Agosin,et al.  Expanding a dynamic flux balance model of yeast fermentation to genome-scale , 2011, BMC Systems Biology.

[82]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[83]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[84]  Juergen Hahn,et al.  Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems , 2008 .