Limitations of Principal Components Analysis for Hyperspectral Target Recognition
暂无分享,去创建一个
[1] David G. Stork,et al. Pattern classification, 2nd Edition , 2000 .
[2] Joydeep Ghosh,et al. Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..
[3] Johannes R. Sveinsson,et al. Multisource remote sensing data classification based on consensus and pruning , 2003, IEEE Trans. Geosci. Remote. Sens..
[4] Russell M. Mersereau,et al. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets , 2005, IEEE Geoscience and Remote Sensing Letters.
[5] Lori M. Bruce,et al. Why principal component analysis is not an appropriate feature extraction method for hyperspectral data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[6] Konstantinos N. Plataniotis,et al. Regularization studies on LDA for face recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..
[7] De-Shuang Huang,et al. Using FCMC, FVS, and PCA techniques for feature extraction of multispectral images , 2005, IEEE Geosci. Remote. Sens. Lett..
[8] Jiang Li,et al. Automated detection of Pueraria montana (kudzu) through Haar analysis of hyperspectral reflectance data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).
[9] Juyang Weng,et al. Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Saurabh Prasad,et al. Decision Fusion With Confidence-Based Weight Assignment for Hyperspectral Target Recognition , 2008, IEEE Transactions on Geoscience and Remote Sensing.
[11] Wenming Zheng,et al. An efficient algorithm to solve the small sample size problem for LDA , 2004, Pattern Recognit..
[12] Jieping Ye,et al. A two-stage linear discriminant analysis via QR-decomposition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Avinash C. Kak,et al. PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..