Review and classification of vision-based localisation techniques in unknown environments

This study presents a review of the state-of-the-art and a novel classification of current vision-based localisation techniques in unknown environments. Indeed, because of progresses made in computer vision, it is now possible to consider vision-based systems as promising navigation means that can complement traditional navigation sensors like global navigation satellite systems (GNSSs) and inertial navigation systems. This study aims to review techniques employing a camera as a localisation sensor, provide a classification of techniques and introduce schemes that exploit the use of video information within a multi-sensor system. In fact, a general model is needed to better compare existing techniques in order to decide which approach is appropriate and which are the innovation axes. In addition, existing classifications only consider techniques based on vision as a standalone tool and do not consider video as a sensor among others. The focus is addressed to scenarios where no a priori knowledge of the environment is provided. In fact, these scenarios are the most challenging since the system has to cope with objects as they appear in the scene without any prior information about their expected position.

[1]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Joo-Hyun Baek,et al.  Visual odometry for outdoor environment using a downward-tilting camera and self-shadow removal algorithm , 2012, 2012 12th International Conference on Control, Automation and Systems.

[3]  A. Bartoli,et al.  Bi-Objective Bundle Adjustment With Application to Multi-Sensor SLAM , 2010 .

[4]  Luis Mejías Alvarez,et al.  Attitude observability of a loosely-coupled GPS/Visual Odometry Integrated Navigation Filter , 2010, ICRA 2010.

[5]  Y. Morales,et al.  DGPS, RTK-GPS and StarFire DGPS Performance Under Tree Shading Environments , 2007, 2007 IEEE International Conference on Integration Technology.

[6]  W. Tian,et al.  Particle filter for sensor fusion in a land vehicle navigation system , 2005 .

[7]  Navid Nourani-Vatani,et al.  A Study of feature extraction algorithms for optical flow tracking , 2012, ICRA 2012.

[8]  Illah R. Nourbakhsh,et al.  A Robust Visual Odometry and Precipice Detection System Using Consumer-grade Monocular Vision , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Sinisa Segvic,et al.  Large scale vision-based navigation without an accurate global reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[11]  Michael Weinmann,et al.  Vision-based attitude estimation for indoor navigation using Vanishing Points and lines , 2010, IEEE/ION Position, Location and Navigation Symposium.

[12]  Chris Hide,et al.  GPS and Low Cost INS Integration for Positioning in the Urban Environment , 2005 .

[13]  I. Jung,et al.  Simultaneous localization and mapping in 3D environments with stereovision , 2004 .

[14]  José Santos-Victor,et al.  Omni-directional Visual Navigation , 1999 .

[15]  José A. Castellanos,et al.  Simultaneous map building and localization for mobile robots: a multisensor fusion approach , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[16]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[17]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[18]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Dennis M. Akos,et al.  Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments , 2012, Sensors.

[20]  Julien Michot Recherche linéaire et fusion de données par ajustement de faisceaux : application à la localisation par vision , 2010 .

[21]  Davide Scaramuzza,et al.  1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic Constraints , 2011, International Journal of Computer Vision.

[22]  Robert M. Haralick,et al.  Analysis and solutions of the three point perspective pose estimation problem , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[24]  Kurt Konolige,et al.  Real-Time Detection of Independent Motion using Stereo , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[25]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[26]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jihoon Choi,et al.  A bimodal approach for GPS and IMU integration for land vehicle applications , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[28]  John F. Raquet,et al.  Navigation Using Optical Measurements of Objects at Unknown Locations , 2003 .

[29]  Daniel Cremers,et al.  Camera-based navigation of a low-cost quadrocopter , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[31]  Jae-Bok Song,et al.  Monocular Vision-Based SLAM in Indoor Environment Using Corner, Lamp, and Door Features From Upward-Looking Camera , 2011, IEEE Transactions on Industrial Electronics.

[32]  Oleg Starostenko,et al.  Optical 3D laser measurement system for navigation of autonomous mobile robot , 2014 .

[33]  Michael Veth,et al.  Fusion of Imaging and Inertial Sensors for Navigation , 2006 .

[34]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[35]  Thomas B. Schön,et al.  A framework for simultaneous localization and mapping utilizing model structure , 2007, 2007 10th International Conference on Information Fusion.

[36]  Sanjiv Singh,et al.  Monocular Visual Odometry using a Planar Road Model to Solve Scale Ambiguity , 2011, ECMR.

[37]  Juan Cao,et al.  Appearance-based mobile robot navigation using omnidirectional camera , 2012, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery.

[38]  Navid Nourani-Vatani,et al.  Correlation‐based visual odometry for ground vehicles , 2011, J. Field Robotics.

[39]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[40]  Wei Zhang,et al.  Image Based Localization in Urban Environments , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[41]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[42]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[43]  Paul D. Groves,et al.  The PNT Boom: Future Trends in Integrated Navigation , 2013 .

[44]  Maxime Lhuillier Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Michel Dhome,et al.  Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion , 2010, BMVC.

[46]  Alison K. Brown TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU , 2004 .

[47]  G. Conte,et al.  Utilizing Model Structure for Efficient Simultaneous Localization and Mapping for a UAV Application , 2008, 2008 IEEE Aerospace Conference.

[48]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[49]  Washington Y. Ochieng,et al.  GPS Integrity and Potential Impact on Aviation Safety , 2003, Journal of Navigation.

[50]  Sven-Lennart Wirkander,et al.  Integrating GPS and INS: comparing the Kalman estimator and particle estimator , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[51]  Francisco Bonin-Font,et al.  Visual Navigation for Mobile Robots: A Survey , 2008, J. Intell. Robotic Syst..

[52]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[53]  Andrey Soloviev,et al.  Integration of GPS and vision measurements for navigation in GPS challenged environments , 2010, IEEE/ION Position, Location and Navigation Symposium.

[54]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[55]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[56]  Andrew Hogue,et al.  A visually guided swimming robot , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Patrick Duvaut,et al.  GPS positioning in a multipath environment , 2002, IEEE Trans. Signal Process..

[59]  Roland Siegwart,et al.  Fusion of IMU and Vision for Absolute Scale Estimation in Monocular SLAM , 2011, J. Intell. Robotic Syst..

[60]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[61]  Simon Lacroix,et al.  Vision-Based SLAM: Stereo and Monocular Approaches , 2007, International Journal of Computer Vision.

[62]  Supun Samarasekera,et al.  Multi-sensor navigation algorithm using monocular camera, IMU and GPS for large scale augmented reality , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[63]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[65]  Didier Stricker,et al.  Using the marginalised particle filter for real-time visual-inertial sensor fusion , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[66]  Ji Hoon Joung,et al.  What does ground tell us? Monocular visual odometry under planar motion constraint , 2011, 2011 11th International Conference on Control, Automation and Systems.

[67]  Peter Corke,et al.  An Introduction to Inertial and Visual Sensing , 2007, Int. J. Robotics Res..

[68]  Agus Budiyono,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[69]  Roland Siegwart,et al.  Real-time metric state estimation for modular vision-inertial systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[70]  Kyoung-Ho Choi,et al.  Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data , 2011 .

[71]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[72]  Soon-Jo Chung,et al.  Mono-vision corner SLAM for indoor navigation , 2008, 2008 IEEE International Conference on Electro/Information Technology.

[73]  Olivier Faugeras,et al.  Cooperation of the inertial and visual systems , 1990 .

[74]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[75]  Satoshi Takezawa,et al.  SLAM in indoor environments with stereo vision , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[76]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[77]  Niko Sünderhauf,et al.  Stereo Odometry – A Review of Approaches , 2007 .