Mesh generation, sizing and convergence for onshore and offshore wind farm Atmospheric Boundary Layer flow simulation with actuator discs

Abstract A new mesh generation process for wind farm modeling is presented together with a mesh convergence and sizing analysis for wind farm flow simulations. The generated meshes are tailored to simulate Atmospheric Boundary Layer (ABL) flows on complex terrains modeling the wind turbines as actuator discs. The wind farm mesher is fully automatic and, given the topography and the turbine characteristics (location, diameter and hub height), it generates a hybrid mesh conformal with the actuator discs and refined upwind and downstream. Moreover, it presents smooth element size transitions across scales and avoids extending high-resolution areas to all the domain. We take advantage of our automatic and robust mesher to study the mesh convergence of our RANS solver with linear elements, obtaining quadratic mesh convergence for a quantity of interest in all the tested cases. In addition, we quantify the mesh resolution at the terrain surface and at the actuator discs required to achieve a given numerical error in simulations in onshore and offshore frameworks. Finally, we present the generated meshes and the simulation results for an offshore and an onshore wind farm. We analyze in detail one particular wind direction for both cases, and for the onshore wind farm we use our automatic framework to estimate the yearly production of energy and measuring the error against the actual produced one.

[1]  Xevi Roca,et al.  Optimization of a regularized distortion measure to generate curved high‐order unstructured tetrahedral meshes , 2015 .

[2]  Rafael Montenegro,et al.  Wind Forecasting Based on the HARMONIE Model and Adaptive Finite Elements , 2014, Pure and Applied Geophysics.

[3]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[4]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[5]  Xevi Roca Navarro Paving the path towards automatic hexahedral mesh generation , 2009 .

[6]  Xevi Roca,et al.  Representing Urban Geometries for Unstructured Mesh Generation , 2016 .

[7]  Guillaume Houzeaux,et al.  A massively parallel fractional step solver for incompressible flows , 2009, J. Comput. Phys..

[8]  N. Troldborg,et al.  An improved k‐ ϵ model applied to a wind turbine wake in atmospheric turbulence , 2015 .

[9]  Guillaume Houzeaux,et al.  A Parallel CFD Model for Wind Farms , 2013, ICCS.

[10]  J. Peraire,et al.  A distortion measure to validate and generate curved high‐order meshes on CAD surfaces with independence of parameterization , 2016 .

[11]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  Rafael Montenegro,et al.  Tetrahedral Mesh Generation for Environmental Problems over Complex Terrains , 2002, International Conference on Computational Science.

[13]  Guillaume Houzeaux,et al.  A variational multiscale model for the advection–diffusion–reaction equation , 2009 .

[14]  Pierre-Elouan Réthoré,et al.  Wind Turbine Wake in Atmospheric Turbulence , 2009 .

[15]  Francesco Castellani,et al.  Wake Modeling with the Actuator Disc Concept , 2012 .

[16]  E. S. Politis,et al.  Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues , 2012 .

[17]  Vladimir A. Garanzha,et al.  Distortion measure of trilinear mapping. Application to 3-D grid generation , 2002, Numer. Linear Algebra Appl..

[18]  G. J. Haltiner Numerical Prediction and Dynamic Meteorology , 1980 .

[19]  Arnau Folch,et al.  A CFD framework for offshore and onshore wind farm simulation , 2017 .

[20]  I. P. Castro,et al.  A LIMITED-LENGTH-SCALE k-ε MODEL FOR THE NEUTRAL AND STABLY-STRATIFIED ATMOSPHERIC BOUNDARY LAYER , 1997 .

[21]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[22]  Xevi Roca,et al.  An automatic and general least-squares projection procedure for sweep meshing , 2009, Engineering with Computers.

[23]  R. Mikkelsen Actuator Disc Methods Applied to Wind Turbines , 2004 .

[24]  Niels N. Sørensen,et al.  Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models , 2015 .

[25]  Niels N. Sørensen,et al.  HypGrid2D a 2-D mesh generator , 1998 .

[26]  Josep Sarrate,et al.  Efficient unstructured quadrilateral mesh generation , 2000 .

[27]  Niels N. Sørensen,et al.  The k-ε-fP model applied to wind farms , 2015 .

[28]  A. Crespo,et al.  Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer , 2011 .

[29]  Kenji Shimada,et al.  Subdivision templates for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without pyramid elements , 2010, Engineering with Computers.

[30]  J. M. González-Yuste,et al.  Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .

[31]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[32]  Simone Marras,et al.  Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems , 2012 .

[33]  Eguzkitza Bazar,et al.  HERMESH : a geometrical domain composition method in computational mechanics , 2014 .

[34]  Jacob Berg,et al.  Large-Eddy Simulation of turbine wake in complex terrain , 2017 .

[35]  C. Masson,et al.  An extended k–ε model for turbulent flow through horizontal-axis wind turbines , 2008 .

[36]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations Based on the Charney–Phillips Grid in Hybrid &sigma–p Vertical Coordinates , 1996 .

[37]  Fernando Porté-Agel,et al.  Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography , 2017, Boundary-Layer Meteorology.

[38]  Niels N. Sørensen,et al.  The k‐ε‐fP model applied to double wind turbine wakes using different actuator disk force methods , 2015 .

[39]  Arnau Folch,et al.  An annual energy production estimation methodology for onshore wind farms over complex terrain using a RANS model with actuator discs , 2018, Journal of Physics: Conference Series.

[40]  Natalja Rakowsky,et al.  amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation , 2005 .

[41]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[42]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[43]  Steven J. Owen,et al.  Formation of pyramid elements for hexahedra to tetrahedra transitions , 2001 .

[44]  Stefan Ivanell,et al.  Validation of methods using EllipSys3D , 2008 .

[45]  Xevi Roca,et al.  A surface mesh smoothing and untangling method independent of the CAD parameterization , 2013 .

[46]  P. K. Chaviaropoulos,et al.  Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions , 2011 .

[47]  Xevi Roca,et al.  Distortion and quality measures for validating and generating high-order tetrahedral meshes , 2014, Engineering with Computers.

[48]  Matthew L. Staten,et al.  Fun sheet matching: towards automatic block decomposition for hexahedral meshes , 2010, Engineering with Computers.

[49]  T. Blacker,et al.  Unconstrained plastering—Hexahedral mesh generation via advancing‐front geometry decomposition , 2010 .

[50]  B. Koren,et al.  Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .