The Human Intestinal Microbiome: A New Frontier of Human Biology

To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health.

[1]  Mihai Pop,et al.  Microbiome Metagenomic Analysis of the Human Distal Gut , 2009 .

[2]  Gabriel Renaud,et al.  A diversity profile of the human skin microbiota. , 2008, Genome research.

[3]  N. Pace,et al.  Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. , 2008, Cell host & microbe.

[4]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[5]  Ian J. Brown,et al.  Human metabolic phenotype diversity and its association with diet and blood pressure , 2008, Nature.

[6]  S. Mazmanian,et al.  Regulation of surface architecture by symbiotic bacteria mediates host colonization , 2008, Proceedings of the National Academy of Sciences.

[7]  Kyle R. Eberlin,et al.  Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition , 2008, Proceedings of the National Academy of Sciences.

[8]  E. Mardis The impact of next-generation sequencing technology on genetics. , 2008, Trends in genetics : TIG.

[9]  G. Olsen,et al.  Critical Evaluation of Two Primers Commonly Used for Amplification of Bacterial 16S rRNA Genes , 2008, Applied and Environmental Microbiology.

[10]  J. Gustafsson,et al.  Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells , 2008, Proceedings of the National Academy of Sciences.

[11]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[12]  Jeffrey L Ram,et al.  Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. , 2008, Journal of microbiological methods.

[13]  Jeremy K. Nicholson,et al.  Gut microbiota: a potential new territory for drug targeting , 2008, Nature Reviews Drug Discovery.

[14]  F. Bushman,et al.  The Macaque Gut Microbiome in Health, Lentiviral Infection, and Chronic Enterocolitis , 2008, PLoS pathogens.

[15]  M. Hornef,et al.  Developmental switch of intestinal antimicrobial peptide expression , 2008, The Journal of experimental medicine.

[16]  Simmie L. Foster,et al.  Gene-specific control of inflammation by TLR-induced chromatin modifications , 2008, Nature.

[17]  C. Sasakawa,et al.  The versatility of Shigella effectors , 2008, Nature Reviews Microbiology.

[18]  Jennifer M. Bates,et al.  Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. , 2007, Cell host & microbe.

[19]  E. Zoetendal,et al.  Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut , 2007, Journal of applied microbiology.

[20]  Peer Bork,et al.  Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer , 2007, Science.

[21]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[22]  J. Penders,et al.  The role of the intestinal microbiota in the development of atopic disorders , 2007, Allergy.

[23]  E. Pamer Immune responses to commensal and environmental microbes , 2007, Nature Immunology.

[24]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[25]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[26]  Hiroshi Mori,et al.  Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  R. Aminov,et al.  Importance of microbial colonization of the gut in early life to the development of immunity. , 2007, Mutation research.

[28]  F. Bushman,et al.  Short pyrosequencing reads suffice for accurate microbial community analysis , 2007, Nucleic acids research.

[29]  G. Dougan,et al.  Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota , 2007, PLoS biology.

[30]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[31]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[32]  R. Xavier,et al.  Unravelling the pathogenesis of inflammatory bowel disease , 2007, Nature.

[33]  V. Gerdts,et al.  Commensal Bacteria and Expression of Two Major Intestinal Chemokines, TECK/CCL25 and MEC/CCL28, and Their Receptors , 2007, PloS one.

[34]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[35]  R. Wilson,et al.  Evolution of Symbiotic Bacteria in the Distal Human Intestine , 2007, PLoS biology.

[36]  J. Gordon,et al.  In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut , 2007, Proceedings of the National Academy of Sciences.

[37]  R. Jirtle,et al.  Environmental epigenomics and disease susceptibility , 2007, Nature Reviews Genetics.

[38]  M. Blaser,et al.  Molecular analysis of human forearm superficial skin bacterial biota , 2007, Proceedings of the National Academy of Sciences.

[39]  Jeffrey I. Gordon,et al.  Mechanisms underlying the resistance to diet-induced obesity in germ-free mice , 2007, Proceedings of the National Academy of Sciences.

[40]  Piet A van den Brandt,et al.  Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study , 2006, Gut.

[41]  M. Hattori,et al.  An Improved DNA Isolation Method for Metagenomic Analysis of the Microbial Flora of the Human Intestine , 2007 .

[42]  R. Seeley,et al.  Physiology: Obesity and gut flora , 2006, Nature.

[43]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[44]  J. Gordon,et al.  Genomic and Metabolic Studies of the Impact of Probiotics on a Model Gut Symbiont and Host , 2006, PLoS biology.

[45]  J. Gordon,et al.  Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period* , 2006, Journal of Biological Chemistry.

[46]  P. Sansonetti The innate signaling of dangers and the dangers of innate signaling , 2006, Nature Immunology.

[47]  S. Mazmanian,et al.  The love–hate relationship between bacterial polysaccharides and the host immune system , 2006, Nature Reviews Immunology.

[48]  Jeffrey I. Gordon,et al.  Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection , 2006, Cell.

[49]  T. Takagi,et al.  MetaGene: prokaryotic gene finding from environmental genome shotgun sequences , 2006, Nucleic acids research.

[50]  D. Relman,et al.  Assembly of the human intestinal microbiota. , 2006, Trends in ecology & evolution.

[51]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[52]  M. McCarthy,et al.  Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice , 2006, Proceedings of the National Academy of Sciences.

[53]  Michiel Kleerebezem,et al.  Isolation of DNA from bacterial samples of the human gastrointestinal tract , 2006, Nature Protocols.

[54]  H. Sahl,et al.  The co-evolution of host cationic antimicrobial peptides and microbial resistance , 2006, Nature Reviews Microbiology.

[55]  J. Gordon,et al.  A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Sack,et al.  Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[58]  M. Hornef,et al.  Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells , 2006, The Journal of experimental medicine.

[59]  J. Lindon,et al.  Pharmaco-metabonomic phenotyping and personalized drug treatment , 2006, Nature.

[60]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[61]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[62]  Rekha Seshadri,et al.  Bacterial Genomics and Pathogen Evolution , 2006, Cell.

[63]  C. Manichanh,et al.  Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach , 2005, Gut.

[64]  Elisabeth M Bik,et al.  Molecular analysis of the bacterial microbiota in the human stomach. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Morimura,et al.  Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease , 2005, Gut.

[66]  E. Rubin,et al.  Application of sequence-based methods in human microbial ecology. , 2005, Genome research.

[67]  N. Mansour,et al.  Probiotics and Prebiotics in Human Health , 2006, Journal of Molecular Microbiology and Biotechnology.

[68]  M. Weichenthal,et al.  Reduced Paneth cell α-defensins in ileal Crohn's disease , 2005 .

[69]  A. Murray,et al.  Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. , 2005, Journal of medical microbiology.

[70]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[71]  J. A. Aas,et al.  Defining the Normal Bacterial Flora of the Oral Cavity , 2005, Journal of Clinical Microbiology.

[72]  T. Ganz,et al.  Human defensin gene copy number polymorphisms: Comprehensive analysis of independent variation in α- and β-defensin regions at 8p22–p23 , 2005 .

[73]  J. Gordon,et al.  Microbial regulation of intestinal radiosensitivity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Edward M. Rubin,et al.  Metagenomics: DNA sequencing of environmental samples , 2005, Nature Reviews Genetics.

[75]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[77]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[78]  K. McCoy,et al.  Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria , 2005, Immunology.

[79]  Mario Albrecht,et al.  Genetics of Crohn disease, an archetypal inflammatory barrier disease , 2005, Nature Reviews Genetics.

[80]  I. Wilson,et al.  Gut microorganisms, mammalian metabolism and personalized health care , 2005, Nature Reviews Microbiology.

[81]  T. Macdonald,et al.  Immunity, Inflammation, and Allergy in the Gut , 2005, Science.

[82]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[83]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[84]  Richard A. Flavell,et al.  Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract , 2005, Science.

[85]  P. Hylemon,et al.  Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. , 2005, Journal of clinical gastroenterology.

[86]  P. Sansonetti War and peace at mucosal surfaces , 2004, Nature Reviews Immunology.

[87]  J. Fujimoto,et al.  Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Human Feces , 2004, Applied and Environmental Microbiology.

[88]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Kleerebezem,et al.  Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice , 2004, Journal of bacteriology.

[90]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[91]  S. Acinas,et al.  Divergence and Redundancy of 16S rRNA Sequences in Genomes with Multiple rrn Operons , 2004, Journal of bacteriology.

[92]  Y. Takeda,et al.  Probiotic Bifidobacteria Protect Mice from Lethal Infection with Shiga Toxin-Producing Escherichia coli O157:H7 , 2004, Infection and Immunity.

[93]  J. Gordon,et al.  Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Martin J Blaser,et al.  Bacterial biota in the human distal esophagus , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Keiichiro Suzuki,et al.  Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  S. Pettersson,et al.  Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA , 2004, Nature Immunology.

[97]  J. Xaus,et al.  Human milk is a source of lactic acid bacteria for the infant gut. , 2003, The Journal of pediatrics.

[98]  Judy H. Cho,et al.  Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis , 2003, Gut.

[99]  W. D. de Vos,et al.  Development of bacterial and bifidobacterial communities in feces of newborn babies. , 2003, Anaerobe.

[100]  J. Gordon,et al.  Honor thy symbionts , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[102]  Jeffrey I. Gordon,et al.  Angiogenins: a new class of microbicidal proteins involved in innate immunity , 2003, Nature Immunology.

[103]  Tasuku Honjo,et al.  Intestinal IgA synthesis: regulation of front-line body defences , 2003, Nature Reviews Immunology.

[104]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[105]  E. Zoetendal,et al.  Molecular Diversity of Lactobacillus spp. and Other Lactic Acid Bacteria in the Human Intestine as Determined by Specific Amplification of 16S Ribosomal DNA , 2002, Applied and Environmental Microbiology.

[106]  W. D. de Vos,et al.  Molecular Monitoring of Succession of Bacterial Communities in Human Neonates , 2002, Applied and Environmental Microbiology.

[107]  Kunitomo Watanabe,et al.  Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction , 2002, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[108]  A. Servin,et al.  Escherichia coli strains colonising the gastrointestinal tract protect germfree mice againstSalmonella typhimuriuminfection , 2001, Gut.

[109]  Judy H. Cho,et al.  A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease , 2001, Nature.

[110]  J. Gordon,et al.  Commensal Host-Bacterial Relationships in the Gut , 2001, Science.

[111]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[112]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[113]  J Lederberg,et al.  Infectious History , 2000, Science.

[114]  T Midtvedt,et al.  A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[115]  E. Zoetendal,et al.  Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria , 1998, Applied and Environmental Microbiology.

[116]  J. Gordon,et al.  A Model of Host-Microbial Interactions in an Open Mammalian Ecosystem , 1996, Science.

[117]  W E Moore,et al.  Intestinal floras of populations that have a high risk of colon cancer , 1995, Applied and environmental microbiology.

[118]  K. Rajewsky,et al.  Interleukin-10-deficient mice develop chronic enterocolitis , 1993, Cell.

[119]  T. Mosmann,et al.  IL-10 inhibits cytokine production by activated macrophages. , 1991, Journal of immunology.

[120]  H. Blöcker,et al.  Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. , 1989, Nucleic acids research.

[121]  D. Savage Microbial ecology of the gastrointestinal tract. , 1977, Annual review of microbiology.