The monkey ventral premotor cortex processes 3D shape from disparity

Visual processing of the three-dimensional (3D) shape of objects is important for object recognition as well as for the control of grasping. Single cell studies have revealed that many ventral premotor cortical (F5) neurons are selective for the shape of real-world objects--the so-called canonical neurons--but there is little experimental evidence for depth structure selectivity in frontal cortex. Here we used contrast-agent enhanced fMRI in the awake monkey to investigate 3D shape processing defined by binocular disparity. We targeted regions in the monkey brain more active for curved than flat, fronto-parallel 3D surfaces. In addition to AIP (Durand et al., 2007), we observed depth structure sensitivity from disparity in a small region of infero-temporal cortex, TEs, known to house higher order disparity selective neurons. Furthermore, within ventral premotor cortex, the most rostral sector of F5, area F5a, showed sensitivity for depth structure from disparity. Within this area, 2D shape sensitivity was also observed, suggesting that area F5a processes complete 3D shape and might thus reflect the activity of canonical neurons. In conclusion, our data point to a distributed functional network, including TEs, AIP and F5a, involved in the analysis of stereoscopic 3D shape information and its potential use in the visual control of grasping.

[1]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[2]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses , 1981, Behavioural Brain Research.

[3]  Marzio Gerbella,et al.  Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex , 2009, The Journal of comparative neurology.

[4]  R. E Passingham,et al.  Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study , 2003, NeuroImage.

[5]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[6]  G. Rizzolatti,et al.  Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. , 2001, Brain : a journal of neurology.

[7]  J. Culham,et al.  The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study. , 2008, Journal of neurophysiology.

[8]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[9]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Rizzolatti,et al.  Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position , 2004, Experimental Brain Research.

[11]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[12]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[13]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[14]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[15]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[16]  Marzio Gerbella,et al.  A multiarchitectonic approach for the definition of functionally distinct areas and domains in the monkey frontal lobe , 2007, Journal of anatomy.

[17]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[18]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[19]  L. Fogassi,et al.  Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. , 2006, Journal of neurophysiology.

[20]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[21]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[22]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[23]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[24]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[25]  Peter Janssen,et al.  Extracting 3D structure from disparity , 2006, Trends in Neurosciences.

[26]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[27]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[28]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[29]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses , 1981, Behavioural Brain Research.

[30]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[31]  R. J. Seitz,et al.  A parieto-premotor network for object manipulation: evidence from neuroimaging , 1999, Experimental Brain Research.

[32]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[33]  Jerry D. Nguyenkim,et al.  Disparity-Based Coding of Three-Dimensional Surface Orientation by Macaque Middle Temporal Neurons , 2003, The Journal of Neuroscience.

[34]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[35]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[36]  Tomoka Naganuma,et al.  Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient , 2002, Science.

[37]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[38]  L. Fogassi,et al.  Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. , 2004, Journal of neurophysiology.

[39]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[40]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[41]  Peter Janssen,et al.  Coding for first- and second order disparity in macaque posterior parietal cortex , 2007 .

[42]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[43]  J. Mandeville,et al.  Vascular filters of functional MRI: Spatial localization using BOLD and CBV contrast , 1999, Magnetic resonance in medicine.

[44]  I. Fujita,et al.  Disparity selectivity of neurons in monkey inferior temporal cortex. , 2000, Journal of neurophysiology.

[45]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[46]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[47]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[48]  Ronald R. Peeters,et al.  Parietal regions processing visual 3D shape extracted from disparity , 2009, NeuroImage.

[49]  G. Orban,et al.  Three-Dimensional Shape Coding in Inferior Temporal Cortex , 2000, Neuron.