Modeling and Control of a Soft Robotic Fish with Integrated Soft Sensing

[1]  A. Farrell,et al.  Energetics and morphology of sockeye salmon: effects of upriver migratory distance and elevation , 2004 .

[2]  Jasmine A. Nirody,et al.  Geckos Race Across the Water’s Surface Using Multiple Mechanisms , 2018, Current Biology.

[3]  Matthew Kelly,et al.  An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation , 2017, SIAM Rev..

[4]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[5]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[6]  C. A. Pell,et al.  Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models , 1995, The Journal of experimental biology.

[7]  D. Floreano,et al.  Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators , 2018, Soft robotics.

[8]  Robert J. Wood,et al.  Wearable soft sensing suit for human gait measurement , 2014, Int. J. Robotics Res..

[9]  J. Rayner,et al.  Pleuston: animals which move in water and air. , 1986, Endeavour.

[10]  James Tangorra,et al.  Fish biorobotics: kinematics and hydrodynamics of self-propulsion , 2007, Journal of Experimental Biology.

[11]  Y. Wang,et al.  A lumped parameter method in the nonlinear analysis of flexible multibody systems , 1994 .

[12]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[13]  Stephen P. DeWeerth,et al.  Biologically Inspired Joint Stiffness Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  Tuong Quan Vo,et al.  Propulsive Velocity Optimization of 3-Joint Fish Robot Using Genetic-Hill Climbing Algorithm , 2009 .

[15]  G. Lauder,et al.  Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. , 2018, Soft robotics.

[16]  Auke J. Ijspeert,et al.  Amphibious and Sprawling Locomotion: From Biology to Robotics and Back , 2020, Annu. Rev. Control. Robotics Auton. Syst..

[17]  Robert F. Shepherd,et al.  Electrolytic vascular systems for energy-dense robots , 2019, Nature.

[18]  H. Bart-Smith,et al.  Central Pattern Generator Control of a Tensegrity Swimmer , 2013, IEEE/ASME Transactions on Mechatronics.

[19]  G. Lauder,et al.  Passive propulsion in vortex wakes , 2006, Journal of Fluid Mechanics.

[20]  Auke J. Ijspeert,et al.  Biorobotics: Using robots to emulate and investigate agile locomotion , 2014, Science.

[21]  Maarja Kruusmaa,et al.  Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows , 2012, Bioinspiration & biomimetics.

[22]  J. Liao,et al.  Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics. , 2017, Marine Technology Society journal.

[23]  G. Lauder,et al.  Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model , 2020, Bioinspiration & biomimetics.

[24]  G. Lauder,et al.  Fish Exploiting Vortices Decrease Muscle Activity , 2003, Science.

[25]  Peng Liu,et al.  A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish , 2016, Applied bionics and biomechanics.

[26]  George V. Lauder,et al.  Robotic Models for Studying Undulatory Locomotion in Fishes , 2011 .

[27]  Tetsuya Iwasaki,et al.  Exploiting natural dynamics for gait generation in undulatory locomotion , 2019, Int. J. Control.

[28]  G. Lauder,et al.  Fish optimize sensing and respiration during undulatory swimming , 2016, Nature Communications.

[29]  Daniel M. Vogt,et al.  Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels , 2013, IEEE Sensors Journal.

[30]  George V. Lauder,et al.  NEW DATA ON AXIAL LOCOMOTION IN FISHES : HOW SPEED AFFECTS DIVERSITY OF KINEMATICS AND MOTOR PATTERNS , 1996 .

[31]  Barry A. Trimmer,et al.  New challenges in biorobotics: Incorporating soft tissue into control systems , 2008 .

[32]  Huosheng Hu,et al.  Biological inspiration: From carangiform fish to multi-joint robotic fish , 2010 .

[33]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[34]  Mirko Kovac,et al.  Efficient Aerial–Aquatic Locomotion With a Single Propulsion System , 2017, IEEE Robotics and Automation Letters.

[35]  Yong-Lae Park,et al.  Hybrid System Analysis and Control of a Soft Robotic Gripper with Embedded Proprioceptive Sensing for Enhanced Gripping Performance , 2020, Adv. Intell. Syst..

[36]  Metin Sitti,et al.  Morphological intelligence counters foot slipping in the desert locust and dynamic robots , 2018, Proceedings of the National Academy of Sciences.

[37]  J. Zhu,et al.  Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes , 2019, Science Robotics.

[38]  Daniela Rus,et al.  Exploration of underwater life with an acoustically controlled soft robotic fish , 2018, Science Robotics.

[39]  Daniel M. Vogt,et al.  Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. , 2017, Soft robotics.

[40]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[41]  Jun Chen,et al.  Shape Memory Polymers for Body Motion Energy Harvesting and Self‐Powered Mechanosensing , 2018, Advanced materials.

[42]  Akira Azuma,et al.  The Biokinetics of Flying and Swimming, Second Edition , 2006 .

[43]  Barbara A. Block,et al.  Direct measurement of swimming speeds and depth of blue marlin , 1992 .